

PIARC Global Road Safety Knowledge Exchange Vehicles

Summary

- About PIARC
- Vehicles Safety Fundamentals
- Vehicles Safety Issues
- Vehicles Safety Measures
- Recommendations

About PIARC

PIARC

World Road Association

- Founded in **1909** as a non-profit, non-political Association
- Foster and facilitate global discussion and knowledge sharing on roads and road transport
- 124 government members worldwide
- Retains consultative status to the Economic and Social Council of the United Nations
- **4 Strategic themes**: ST1 road administration, ST2 mobility, ST3 safety and sustainability, ST4 resilient infrastructure
- 16 Technical Committees (TCs), 4 per strategic theme, unite experts from numerous areas including road safety and design, network operations and maintenance, finance and governance.

PIARC Road Safety Technical Committee

Technical Committee T.C. 3.1: Road Safety part of ST3:

- Observes specific road safety issues for LMICs
- Explores the implementation of proven countermeasures
- Updates the "Road Safety Audit Guidelines" and the "Road Safety Manual"
- Disseminates and encourages the **application of the manuals**
- Provides access to well-chosen safety measures and their dissemination among LMICs
- Studies the implications of **connected and automated vehicles**

PIARC Road Safety Activities

- Technical reports prepared by the Technical Committees
 - Well-Prepared Projects

PIARC

- Automated Vehicles Challenges and Opportunities for Road Operators and Road Authorities
- Road Safety Manual: an electronic manual for all technicians and managers concerned about road safety issues acknowledged by the United Nations
- Seminars organised by the Association available online
 - Connected and Autonomous Vehicles, a Pathway towards a Safer Future, 27-28 October 2021
 - Road Safety in Low to Middle Income Countries, 18-20 May 2021
- Declaration of Support to the UN Decade of Action

PIARC Global Road Safety Knowledge Exchange Project

- Aiming to promote knowledge sharing through appropriate implementation aids that will reflect previous work of but not limited to PIARC
- Focus on spreading road safety knowledge to Low- and Middle-Income Countries, where death rates due to road traffic injuries in LMICs are three times higher than in high-income countries (HIC).
- With the support of National Technical University of Athens (NTUA) and Austrian Institute of Technology (AIT)
- Deliverables for this project include fact sheets, presentations. Based on the road safety manual and other relevant material produced by PIARC technical committees (reports, case studies etc.).

Vehicles Safety Fundamentals

Priority UN Vehicle Safety Standards (1/2)

- I-2: Frontal impact protection and side impact protection (R94 and R95): ensure that cars withstand the impacts of a frontal and side impact crash when tested at certain speeds. These crashworthiness regulations help to protect occupants withstand the impact of front and side impact crashes.
- 3: Electronic stability control (R140): prevents skidding and loss of control in cases of oversteering or understeering and is effective at reducing crashes and saving lives.
- 4: Pedestrian front protection (R127): provides softer bumpers and modifies the front ends of vehicles that can reduce the severity of a pedestrian impact with a car.

Priority UN Vehicle Safety Standards (1/2)

- 5-6: Seat-belts and seat-belt anchorages (R14 & R16): ensure that seatbelts are fitted in vehicles when they are manufactured and assembled and that the seat-belt anchor points can withstand the impact incurred during a crash, to minimize the risk of belt slippage and ensure that passengers can be safely removed from their seats if there is a crash.
- 7: Child restraints (R129): ensure that the child seat is in place with the adult seat-belt and that ISOFIX child restraint anchorage points are fitted to secure the restraint.
- 8: Motorcycle anti-lock braking systems (R78): help the rider maintain control during an emergency braking situation.

LMICs Vehicles Safety Fundamentals

- None of the Low income countries have implemented any of the 8 priority UN vehicle safety standards
- Only 4% of Lower-middle income countries have implemented the priority UN vehicle safety standards R94, R95, R140, R127 and R78
- Regarding the upper-middle income countries:
 - 16% have implemented R94 and R95
 - 13% have implemented R140 and R127
 - 5% have implemented R78

Vehicles Safety Issues

Vehicle Safety Systems

- Passive Safety Systems intend to limit the damage caused to driver and passengers in the event of a crash:
 - Airbags,
 - Seatbelts,
 - Helmets,
 - Whiplash protection system, etc.
- Active Safety Systems play a preventive role in mitigating crashes by providing advance warning or by providing the driver with additional assistance in steering/controlling the vehicle:
 - Anti-lock braking systems
 - Electronic stability control, etc.

Vehicle Safety Regulations

- In many LMICs vehicle safety is not effectively regulated through design standards or maintained through mandatory vehicle inspection schemes.
- The vehicles safety features have penetrated countries to a different extent.
- "Standard equipment" in new vehicles differs between countries.
- Depending on regulations in place per destination market, vehicles are produced with different safety features.
- Automobile companies frequently "de-specify" life-saving features in newer models sold in countries where regulatory frameworks do not require these features.

Overweight Vehicles

PIARC

- Weight limits for road freight vehicles typically cover the aspects of gross vehicle weight and axle load.
- Gross vehicle weights differ greatly between countries and continents.
- Axle loads are linked to infrastructure design parameter
- LMICs report very low compliance levels due to overloading for cost saving and lack of enforcement.

Overweight Vehicles Effects

- Effects of overloading on the pavement residual life depend on **factors**:
 - Type of traffic
 - Load distribution
 - Vehicle wheel and suspension
 - Type of pavement; condition, thickness, unevenness, cracking
 - Environmental factors; temperature, water presence
- Unpaved roads, mostly present in LMICs, are the most affected by overloading, resulting in secondary rutting and corrugation, increasing the dynamic impact of the load and accelerating pavement deterioration.
- Overloading influences the safety performance of the overloaded vehicles

Vehicles Safety Measures

Safe System Approach

- UN Second Decade of Action for Road Safety, with a goal of reducing road traffic deaths and injuries by at least 50 per cent from 2021 to 2030
- Adoption of Safe System Approach is necessary to prevent fatal and serious crashes.
- Vehicles should be designed to ensure the safety of those inside and those outside them.
- Vehicle safety is increasingly critical to the prevention of crashes and contributes to substantial reductions in the number of deaths and serious injuries on the road.

Safe System Principles

0		
Death/Serious Injury	Humans	Humans Are
is Unacceptable	Make Mistakes	Vulnerable
	0.8.0	Ð
Responsibility	Safety is	Redundancy
is Shared	Proactive	is Crucial

Vehicle Safety Regulations

- Apply harmonized legislative standards for vehicle design and technology to ensure a uniform and acceptable level of safety worldwide.
- Governments should provide, through legislation, a minimum set of safety standards for vehicles, considering:
 - all "traditional" categories of vehicles, including passenger cars, vans, trucks, buses, and powered two- and three-wheelers,
 - "informal" modes prevalent in many countries, especially LMICs; tuk-tuk, skylabs, jeepneys

High-quality harmonized safety standards (1/2)

- Standards on front and side impact to ensure that occupants are protected in a front and side-impact crash
- Safety belts and safety belt anchorage for all seats to ensure that safety belts are fitted in vehicles when they are manufactured and assembled
- ISOFIX child-restraint anchor points to secure the child-restraint systems attached directly to the frame of the vehicle to prevent misuse
- Electronic stability control to prevent skidding and loss of control in cases of oversteering or understeering
- Advanced emergency braking to reduce collisions

High-quality harmonized safety standards (2/2)

- Pedestrian protection standards to reduce the severity of impact with a motor vehicle
- Motorcycle helmets certified according to international harmonized standards
- Anti-lock braking system and daytime running lights for motorcycles
- Intelligent speed assistance systems to help drivers keep to speed limits
- eCall or Accident Emergency Call Systems (AECS) to trigger an emergency response by an in-vehicle sensor

Actions to Ensure Vehicle Safety

- Mandatory certification and registration systems for new and used vehicles based on established safety requirements and combined with routine inspections
- Regulations for the export and import of used vehicles that are accompanied by inspections at entry and exit points, and mandatory periodic technical inspection of vehicles
- Building demand for safer vehicles by encouraging independent new car assessment programs

Mitigation of Overweight Vehicles (1/2)

• Legislation is the first step. A well formulated legal text should contain:

- Precise definitions of the vehicles considered
- Precise definitions of the types of axles and axle sets concerned
- Precise definition of the scope of the network on which the legislation is valid
- The exact weight limits
- The relevant derogations under which the legislation does not apply
- The methods of detection that can be applied to discover violations
- The consequences of violations
- Education of transport operators and all actors in the transport chain regarding the applicable legislation and its modalities.
- Proper information regarding the consequences of overloading

Mitigation of Overweight Vehicles (2/2)

- Use of low-tech to high-tech equipment for the detection of overloading
 - Static weighing scales
 - Movable static scales
 - Weighing in motion
- Effective enforcement of weight limits by deployment of more staff and increase in fines could lead to higher compliance and a decrease in safety risk
- Penalties:
 - Financial (fine)
 - Operational (immobilization and offloading)
 - Institutional (loss of reputation for the operator)

Vehicle Automation

PIARC

- Smart Vehicles or autonomous Vehicles are bringing us in a different mobility environment.
- 94% of road accidents are caused by human distraction
- Autonomous vehicles could prevent all crashes caused by impaired driving
- Driver disengagement is critical phase in which accidents with ADAS may occur
- LMICs should start with small pilot deployments of the most mature automated services; safety-related automated services are preferable, as road safety is the highest motivation for deployment.

Recommendations

Vehicles Safety Recommendations

- Providing a safe operating environment for road users is a primary responsibility for the government and industry organisations that design, build, maintain and regulate roads and vehicles.
- Regarding vehicle automation, LMIC governments and transport industry should be prepared to avoid being caught off guard and to not get left behind the global community
- Prevention and mitigation solutions for overloading include four steps:
 - **1.** Legislation
 - 2. Prevention and education
 - 3. Detection and enforcement
 - 4. Penalisation

PIARC IS BOOSTING ROAD SAFETY IN LMICs

- Vehicles safety is a contributing factor to road safety and an area where the PIARC Road Safety Technical Committee has produced relevant reports, case studies and documents available to all road authorities and stakeholders.
- PIARC is engaged in promoting road safety all over the world and committed to actively support safety in LMICs.
- All actions contribute fully to the success of the UN Decade of Action for Road Safety.
- The new knowledge-sharing campaign for road safety will provide monthly updates, on social media and on PIARC website, for all essential road safety areas.
 - Stay tuned for more actions and events!!

Relevant PIARC reports

• Overweight Vehicles: Impact on Road Infrastructure and Safety

Thank you for your attention!

World Road Association (PIARC) Grande Arche – Paroi Sud – 5°étage 92055 – La Défense Cedex – France

www.piarc.org

