

Life Cycle Analysis Of Tunnel Equipment - Basis For Safe Operation

Road Tunnel Operations Management and Safety Seminar Chongqing, 18 - 20 October 2006

Urs Welte Dipl. El.Ing. ETH Switzerland

AMSTEIN + WALTHERT

Index of Contents

- Introduction
- Basics

- Useful life period
- Life cycles of a few selected systems
- Summary & Recommendation
- Questions

Introduction

Introduction

- The importance of the technical equipment in tunnels (technical maintenance vs. total maintenance)
- Existing tools for an optimal Asset Management
- Exploration of the optimal useful life period
- Problem: The optimal useful life period of EM-Systems depends on the application area

- Life cycle: max possible useful life period
- Useful life period: time in which the system can be used reasonably

Basics

AMSTEIN + WALTHERT

Life Cycle & Useful Life Period

Ö

ø

Impacts on Life Cycles

- Maintenance
 - Aim: to improve the useful life period with a minimum of money & manpower, or minimize the risk of a break down
 - Different maintenance strategies:
 - High reliability, small error probability
 - Longest possible useful life period
 - Ideal conservation of value

Impacts on Life Cycles

AMSTEIN + WALTHERT

Refurbishment, Renovation due to external reasons

Reasons for a total renovation	Notes	
Structural renovation of the tunnel	Pavement, sealing,	
New safety / environment requirements	Ventilation, escape route	
Most of the equipment has reached its end of the life cycle		

Basics

Basics

5

AMSTEIN + WALTHERT		AV AMSTEIN + WALTHERT		
Conclusions		Useful Life Period in Practice		

• In a systems life cycle, the replacement is influenced by:

- Life cycle curve of the system
- Total tunnel refurbishment
- New requirements

Basics

Superior reasons (lack of maintenance,...)

Example 1

Useful Life Period

Example 2

Useful Life Period

q

Useful Life Period

11 Useful Life Period

Ö

Example 5

Average

Useful Life Period

AMSTEIN + WALTHERT

Life Cycles of a Few Selected Systems

- Illumination
- Control and communication systems
- Energy cabling systems
- Fibre optic cabling systems

AMSTEIN + WALTHERT

15

Illumination

Life Cycles of a Few Selected Systems

14

Illumination System

- The illumination is part of a system including:
 - Control system
 - Luminaire
 - Lamp
 - Electronic ballast
- thermal influences mechanical influences electronic influences electrical influences environmental influences

AMSTEIN + WALTHERT

Illumination System Life Cycle

- Mainly used components:
 - Fluorescent lamp
 - High pressure sodium lamp

Life Cycles of a Few Selected Systems

17 Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

Illumination System Life Cycle

- Useful life period ends if:
 - The luminous flux is lower than 70-80% of the original luminous flux

Life Cycles of a Few Selected Systems

M AMSTEIN+WALTHERT

19 Life Cycles of a Few Selected Systems

Ö

How to Define Replacement Cycle

Criteria	Comment
Operating hours	Best practice
Luminance measuring	Difficult due to changing conditions

AMSTEIN + WALTHERT Conclusion

- The optimal life period can be defined by:
 - Supplier data & special "tunnel effect"

Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

Life Cycles of a Few Selected Systems 21

Data vs. Actual Experience Estimation of the useful life period sout flux of the typhens [N] -** . . lighting hours (N) high pressure sodium lamp + fluorescent lamp long living fluorescent lamp nce values experie

Life Cycles of a Few Selected Systems 23

AMSTEIN + WALTHERT

Control & Communication Systems 18 E. 0

24

Control Systems are Used for:

- Traffic
- Technical systems
- Alarms
- Messages

Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

25

Bath Tub Curve of Control Systems

Typical life cycle of control systems

Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT				
Theoretical I	Life Cycle	Data is	Basing	on:

- Room temperature: 20-25°C
- Humidity: 40-60%
- No vibrations

W ANSTEIN+WAITHERT Typical Elements of Control Systems

- Active components without moving parts and hot spots
- Active components with moving parts (PC, Server,...)

Life Cycles of a Few Selected Systems

26

Ö

AMSTEIN + WALTHERT AMSTEIN + WALTHERT **Typical Elements of Control Systems** Example: PC Joining elements (sockets, plugs,...) Disks Passive components like communication Fan for the chip networks (fibre glass,...) Power supply unit Fan for the casing INUX Software Life Cycles of a Few Selected Systems Life Cycles of a Few Selected Systems 29

Life Cycles of a Few Selected Systems

31 Life Cycles of a Few Selected Systems

0

32

Measures for Better Life Cycles: Temperature

T ≤ 0.7 T_{max} (28°C –rule)

AMSTEIN + WALTHERT

Temperature = Most Important Stress Factor

Arrhenius

- Higher temperatures → faster chemical reactions
- T+10° → double reaction rate

$$r = \frac{dq}{dt} = A * \exp^{\left(-\frac{E}{kT}\right)}$$

Chemical reaction Reaction rate Absolute Material term Activation Energy [eV] Boltzmann-term 8.6°10^-5 eV/K

Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT ta E K Ta $\frac{ts}{ta} = \exp^{\frac{E}{k} * \left(\frac{1}{T_s} - \frac{1}{T_a}\right)}$ 10 1.1 eV Factor of the accelerated aging .8 e V 0.5 eV ٥ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4 Delta T over 22°C

Life Cycles of a Few Selected Systems

Life Cycles of a Few Selected Systems 33

Aging Factor

AMSTEIN + WALTHERT **Energy Cabling Systems**

- Operational life cycle: 30-40 years
- Main reason for damages: short circuit → damages to other systems
- Aging is influenced by high operating voltages & high temperatures (Arrhenius)

Life Cycles of a Few Selected Systems 35

36

Risk Factors (Cables PE, XPE)

AMSTEIN + WALTHERT

Preventive Actions to Avoid Early Breakdowns

- Overload protection
- No damages at the cable jacket
- Overvoltage protection
- Periodic isolation tests

Life Cycles of a Few Selected Systems

37 Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

Conclusion

Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

Fibre Optic Cabling Systems

- The useful life period is affected by:
 - Intrinsic factors: surface conditions, micro cracks
 - Extrinsic factors: bending, torsion, temperature, humidity, gases
 - Optical factors: short term optical overstress

39 Life Cycles of a Few Selected Systems

Ö

Static Stress

Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

Preventive Measures for Long Life Cycles

- No variations in temperature (cable conduit)
- No humidity (cable conduit)
- Good mechanical support
- Bending rules
- Reduction in stress & protection from environmental effects → longer life cycle

41 Life Cycles of a Few Selected Systems

AMSTEIN + WALTHERT

Summary & Recommendations

- Extrinsic factors have a high influence on a systems life cycle
- Empirical evaluation and observation necessary
- Analysis and diagnostics on a case-to-case basis

Summary & Recommendations