Présentation

GeRiCi

Projet

Approach, Method and Tool for "Risks Management related to Climate Change and its impact on Infrastructures": the GeRiCi Project

Gerici

Veille

Expériences

Why GeRiCi?

 Infrastructures designed according to specific events references (i.e. frequency)
Accepted risk

 References on Specific events are based on past experience with a stable global climate hypothesis

"The climate change is in progress" (ONERC,24/06/2005)

Climate Change modifies the real risk level and challenges conception rules

Why GeRiCi?

 How can the climate evolution be predicted for the 50 next years ?

No evolution model is certain, all models lead to "probabilities"

Increase of unusual climate events (strength - frequency)

caused by climate change

Increase of their impacts

urbanisation, increase of trades

Impacts of unusual climate events (1/7): Wind

PIARC Seminar Ha Noi - April 2006 - P4

Source : SANEF

December 1999 Storm in France: winds from 160 to 200 km/h

Drought

Summer 2003 : forest fire close to A8 motorway near Vidauban (Var)

Impacts of unusual climate events (2/7):

Snow

February 2001: Snowbound traffic on A40, and A8 at Saint-Maximin (South of France) after copious snowfalls at night.

©ASF/ Escota

Impacts of unusual climate events (3/7):

PIARC Seminar Ha Noi - April 2006 - P6

Slip road flooded with surface water

Rain & Flood

8 July 2001: A1 motorway flooded near Roye (North of France), following strong storms

Impacts of unusual climate events (4/7): Flood in USA

Flood in Bulgaria

Impacts of unusual climate events (5/7): Hurricane and Bridges

The easternmost span of the westbound US 90 bridge was thrown north more than 50 feet.

US 90 Eastbound - Pass Christian to Bay St. Louis, Mississippi

The superstructure units for the bridge were displaced to the north and many dropped off the piers

Impacts of unusual climate events (6/7):

Hurricane and Roads Network

Many approach spans to Interstate 10 (New Orleans, Louisiana) were underwater. The ramps were used to support emergency operations

Impacts of unusual climate events (7/7): Hurricane and Pavements

Large masses of asphalt pavement peeled off US-90 Southeast of Slidell, Louisiana

Meteorological Catastrophes

Disasters causing more than 100 hurts and/or 100 MUSD of insured compensation

GeRiCi

PIARC Seminar Ha Noi - April 2006 - P11

Source: Munich Reinsurance Company

An Applied Research Program :

after a Call for Proposals by RGCU

(French Ministry for Infrastructure - National Network for Urban and Civil Works)

supported by DRAST

(French Ministry for Infrastructure - Directorate for Scientific and Technical Affairs)

A network of 7 partners:

- SCETAUROUTE Project leader
- SANEF Expectations and needs of
- ASF clients & operating companies
- BCEOM Hydraulics Expertise
- METEO France Meteorological data
- LCPC High-level expertise
- ESRI GIS tool

GeRiCi objectives (1/2)

• Design of a Climate Risk Analysis and Management Model for Infrastructures

• Design of a Risk Management Tool:

- Short term action of alert and prevention for operating managers facing an unusual event
- Medium term action to adapt infrastructures to the Climate Evolution
- Propositions of Palliative Measures to mitigate the Risks

Assessment of the Infrastructure sensitivity (issues at stake)

Determination of Risk Levels and their critical loads

Adjustment to Climate Data evolution

Knowledge and Experience Capitalisation for sustainable relevance of both method and tool

3eRiC

PIARC Seminar Ha Noi - April 2006 - P14

Risk Analysis

Our consortium works in partnership with a high-level Expert specialised in Risk Management (broad experience in nuclear industry and other industrial sectors).

This partnership enables us to provide a Methodology of high-professional level, specifically adapted to Road/Motorway Sector and Climate Change issues.

The UE: Unwanted Events

A Meteo-France data table detailing strength and frequency of each weather phenomenon:

- Cold / Frost
- Snow
- Rain
- Floods
- Dog days
- Wind

Can be combined in pairs:

- Frost and rain
- Frost and snow
- Rain and wind
- Flood and wind
- etc.

Scope of Expertise

- 7 Domains of Expertise :
 - Pavements
- Geotechnics
 - Bridges

- Environment
- Equipment
- Big Hydraulics
- Little Hydraulics and drainage
- Each domain of Expertise is structured in:

"Families" (as "sign gantries" for Equipment),

"Sub-families" (as "A type sign gantries"), and

"Objects" (as " A type sign gantry at mileage point X).

Though, each infrastructure to be analysed is fully detailed by objects.

So, an **object** is a unique element, with only one geo-localisation. (sign gantry, tree, bridge, canopy, culvert, low point, electric line,...)

Risk maps are analysed in light of their foreseeable consequences on:

- Costs
- Infrastructure's Durability
- Continuity of service to Users
- Users' safety
- Prejudicial effects to Environment

This leads to the identification of critical scenarios:

- Route disruption
- Disruption of access to sensitive structures
- People injuries

Example of Risk Matrix:

Risk Frequency	Consequence : Route disruption			
	< 1 h	From 1 h to 24 h	From 1 to 2 days	> 2 days
High				
Medium				
Low				

Unacceptable

Acceptable

The way to the tool

- <u>1st Step</u>: « risk analysis » methodology

- <u>2ª Step</u>: tool programming - risks identification -Climatic risk vulnerability for all infrastructure's objects

- <u>3ª</u> <u>Step</u>: <u>GIS Diagnostic tool</u> setting up

To keep count in the future of best knowledge in climatic change data and their effects, or infrastructure's modifications, this tool is evolved to be modified easily

- <u>4th</u> <u>Step</u>: palliative measures to improve the risk level acceptability

- <u>5th</u> Step: <u>Alert System</u> for Road Manager (link between Météo France Alert System and GIS tool)

Progress status of the Project (1/2)

- <u>1st Step</u>: « Risk Analysis » is completed
- <u>2d</u> <u>Step</u>: in progress. We are :
- Recording all climate event consequences on infrastructure in the world (with more detail in France)
- Creating a Knowledge Database for Operators, with geo-localisation of past critical scenarios and their consequences
- Working with experts to assess the impacts of unusual climate events on objects (and define subsequent research action as necessary)

Progress status of the Project (2/2)

- <u>3ª Step</u>: <u>GIS Diagnostic tool</u> is in progress. First tests on a 10 kms long motorway section are convincing

- The global approach is now complete and can be used to assist various stakeholders (Ministry Road Direction, Roads Operating Managers, ...)

- The GIS tool will be operational at the end of 2006

