SAFE-FOLLOWING DISTANCES BASED ON THE CAR-FOLLOWING MODEL

Department of Highways
Thailand

Overview

- Introduction
- Methodology
- Data Collection
- Results
- Conclusions

Introduction

- More than 100,000 traffic accidents per year (12,000 deaths).
- Rear-end collisions ~ most common
- Aim of this research \sim reduce the severity and the number of road accidents.
- Derive safe following distance.
- Assist drivers with treatment marking.

Driving Task

Traffic Stability
$>1^{\text {st }}$ decelerates.
$>$ Others react.
$>7^{\text {th }}$ and $8^{\text {th }}$ collide.

Car-Following

- Notation:

$$
\text { Follower } \quad \text { Leader }
$$

$\square x_{n}(t)-x_{n+1}(t)=$ spacing $($ space headway $)=l_{n+1}(t)+\mathrm{VL}$
\square speed of vehicle $\mathrm{n}: \frac{d x_{n}(t)}{d t}=\dot{x}_{n}(t)$
\square acceleration (decceleration) of vehicle $\mathrm{n}: \frac{d \dot{x}_{n}(t)}{d t}=\frac{d^{2} x_{n}(t)}{d t}=\ddot{x}_{n}(t)$
$\square \dot{x}_{n}(t)-\dot{x}_{n+1}(t)=\dot{l}_{n+1}(t)$

GM 5 ${ }^{\text {th }}$ Car-Following

$$
\ddot{x}_{n+1}(t+T)=\frac{\alpha\left[\dot{x}_{n+1}(t+T)\right]^{m}}{\left[x_{n}(t)-x_{n+1}(t)\right]^{l}}\left\{\dot{x}_{n}(t)-\dot{x}_{n+1}(t)\right\}
$$

where $\ddot{x}_{n+1}(t+T)$ is the acceleration of the $\mathrm{n}+1$ th car at time $\mathrm{t}+\mathrm{T}$
$\dot{x}_{n+1}(t+T)$ is the velocity of the $\mathrm{n}+1$ th car at time $\mathrm{t}+\mathrm{T}$
$x_{n}(t)$ is the distance of the n th car at time t
$x_{n+1}(t)$ is the distance of the $\mathrm{n}+1$ th car at time t
$\dot{x}_{n}(t)$ is the velocity of the n th car at time t
$\dot{x}_{n+1}(t)$ is the velocity of the $\mathrm{n}+1$ th car at time t
α is the sensitivit y factor
m, l are constant

Methodology

- Calibrate the car-following model
- Analyze stability condition
- Derive safe following distance

Methodology

- Convert GM5th => Traffic Stream Model

Methodology

- Introduce error terms

$$
v_{i}=v_{f} \cdot\left[1-\left(\frac{k_{i}}{k_{j}}\right)^{\gamma-1}\right]^{\frac{1}{1-\beta}}+\varepsilon_{i}
$$

$$
\begin{aligned}
& \varepsilon_{i} \sim N\left[0, \sigma^{2}\right] \\
& f\left(\varepsilon_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}} \varepsilon_{i}^{2}}
\end{aligned}
$$

- Log-likelihood

$$
\ln L\left(\beta, \gamma, v_{f}, k_{j}, \sigma^{2}\right)=-\frac{N}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \cdot \sum_{i=1}^{N}\left[v_{i}-v_{f}\left[1-\left(\frac{k_{i}}{k_{j}}\right)^{\gamma-1}\right]^{\frac{1}{1-\beta}}\right]^{2}
$$

Stability Condition

- The Governing Equation of the car following model

$$
\ddot{x}_{n+1}(t+T)=\frac{\alpha\left[\dot{x}_{n+1}(t+T)\right]^{m}}{\left[x_{n}(t)-x_{n+1}(t)\right]^{l}}\left\{\dot{x}_{n}(t)-\dot{x}_{n+1}(t)\right\}
$$

- Perturb the equilibrium solution with a small deviation term

$$
X_{n}(t)=b \cdot n+v \cdot t+\varepsilon(n, t) \text { where } \varepsilon(n, t)=f_{n} \cdot e^{i \omega t}
$$

Stability Condition

$$
\frac{\alpha \cdot[v]^{\beta}}{b^{\gamma}} \cdot T \leq \frac{1}{2}
$$

Where $\mathrm{v}=$ prevailing speed
$\mathrm{T}=$ reaction time
$\mathrm{b}=$ distance headway

Case Study

- National Highway 7 (Chon Buri Motorway)
- Located at km $50+000$ toward Chon Buri
- Traffic volumes ~heavy during weekend morning and afternoon peak periods (ADT ~60,000)

Study Site

Study Site

Detector Placement

Calibration Result

Parameter	Mean	Standard Error	t-ratio
σ^{2}	33.646	2.238	15.034
$\mathrm{~V}_{\mathrm{f}}$	95.716	0.080	$1,196.450$
k_{i}	116.067	1.482	78.318
Y	4.510	0.042	107.143
β	0.990	0.00002	49500.000

Comparison of Recommended Following Distances

Speed (km/h)	Safe Following Distance (m)			
	Pipes'*	Forbes'*	Calibrated GM	2-second Rule
80	30.00	38.33	49.76	44.44
90	33.13	42.50	51.06	50.00
100	36.25	46.67	52.26	55.56
110	39.38	50.83	53.36	61.11
120	42.50	55.00	54.39	66.67
130	45.63	59.17	55.35	72.22
* Assume average vehicle length of 5 meters.\square Recomm ended following distances				

Following Distances Based on Different Car-Following Models

Speed-Flow Curve

Speed-Flow Curve of the Traffic on the National Highway 7 toward Chon Buri

"DOT"
 Tailgating Treatment

Sign and Pattern Layout

"DOT" Tailgating Treatment

Width:Length $=1: 3$ ratio*

Typical Marking

Alternative	$\mathrm{A}(\mathrm{m})$	$\mathrm{B}(\mathrm{m})$	Area $(\mathrm{sq} \mathrm{m})$
Motorway	2.25	0.75	1.33

${ }^{\prime}$ Based on standard colong pavement markings referenced in the MUTCD

Comprehenslon Time	$:$	5	sec
P/R TIme	$:$	2.5	sec
Adjustment Time	$:$	20	sec
Effective Time	$:$	60	sec
Vehicle Correction	$:$	4.5	meters
Vehicle Legth	$;$	5,0	meters

Posted Speed (km/h)	Recommended Following Distance (meters)	S Marking Spacing (meters)	Minimum Marking in Pattern	L Min Pattern Length (meters)	X Pattern Spacing (meters)	Capacity (pc/ln/hr)
80	50	41	15	574	1300	1440
90	52	43	16	645	1500	1560
100	53	44	18	748	1600	1700
110	54	45	19	810	1800	1830
120	55	46	20	874	2000	1960

* Remark

1. If the observed volume exceeds the capacity provided in this table, the "DOT" tailgating treatment should not installed.
2. The "DOT" tailgating treatment should only be installed to the location where rear-end collisions due to aggressive driving behaviors are frequent.

CONCLUSIONS

- MLE \Rightarrow calibrate $=>$ GM 5th car-following model
- Assist drivers => Following distance for speed range $80-120 \mathrm{~km} / \mathrm{h}$

FUTURE RESEARCH

- More Data Collection

Reaction Time $=>$ determination More Field Applications => validation

THANK YOU

