Co-operation Traffic Management and Traffic Information

Hans-Joachim Schade
Siemens AG, I&S, Munich

International Seminar on Intelligent Transport Systems in Road Network Operations
Kuala Lumpur, Malaysia
14 to 16 August 2006
The Idea Behind Traffic Management
Traffic Management Capability
Traffic Information Capability
Traffic Management and Traffic Information on a Single Platform
Complexity along three Dimensions
Public-Private Operation Models for Traffic Management and Traffic Information
Conclusion
The Idea Behind Traffic Management

Traffic Management

- Freeways
- Ring Roads
- Urban Traffic
- Events
- Public Transportation
- Parking
- Road Works
The Multi-Level System Architecture

Strategic Level
TRAFFIC MANAGEMENT SYSTEM
- Data Collection
- Refinement & Valuation
- Strategy Management

Tactical Level
- Parking guidance system
- Public transport system
- Urban traffic control systems
- Freeway management system
- CCTV

Operative Level
- Cameras
- Signals
- Detectors
- Signs

Measured data, systems status, etc.

Strategies, control settings, etc.
Cities run various independent traffic systems

Most systems do not interchange data

A TMS integrates these systems into a single application

Traffic Management thereby provides the basis for

1. Cross-System Traffic Strategies
2. Distribution of Traffic Information
How Can Traffic Management Help Your City?

- Achieve collaboration & central control of existing, independent traffic subsystems
- Comprehensively monitor & visualize traffic conditions in real time
- Provide value-added traffic information services to the public
- Improve road safety through incident detection & response management
- Prevent and actively fight congestion by intelligently influencing traffic on the road
- Demonstrate civil responsibility through a pro-active approach to traffic improvement
Traffic Information Capability

TRAFFIC MANAGEMENT / INFORMATION SYSTEM

- Service Platform
 - Incident Detection
 - Media Management
 - Strategy Management
 - GIS (LOS Visualization)
 - Response Plans

- Traffic Data Collection
- Message Management

- Visionary
- Operator Messages
- Roadwork System
- Highway System
- Weather Data

- Radar
- Loops
- Above Ground Detection (IR, µW)
- Video
- Floating Car Data
- Inciident Detection Subsystem Control

- TMC
- Location Coder
- Event Coder

- In-Car Navigation
- Cellular Phone

- Web Portal
- SMS
- LOS Visualization
- Radio
- VMS
- Parking

- Parking
- Radio
- In-Car Navigation

© Siemens I&S, 2006
Traffic Management and Traffic Information on a Single Platform

Traffic Information Capability

Traffic Management Capability

TRAFFIC MANAGEMENT / INFORMATION SYSTEM

Service Platform

- Travel Time Calculation for Links & Routes
- Traffic Data Collection

Incident Detection
- Media Management
- Strategy Management
- Response Plans

Message Management

Subsystem Control
- GIS (LOS Visualization)
- Traffic Management Capability

Traffic Control Center
- Above Ground Detection (IR, µW)
- Radar
- Loops
- Video
- Floating Car Data
- Operator Messages
- Roadwork System
- Highway System
- Weather Data

© Siemens I&S, 2006
The Value Chain for Integrated Traffic Management & Traffic Information Services

Traffic Data Collection

- Above Ground Detection (IR, µW)
- Video Detection
- Traffic Control Center
- LOS Visualization
- Floating Car Data
- Loops

Traffic Management System (e.g. Siemens CONCERT)

- Highway Systems
- VMS Signs
- Traffic Control
- Parking

Traffic Information

- Radio
- In-Car Navigation
- Off-Board Navigation Services
- Cellular Phone
- Web

Acquisition and collection of relevant data from various sources

Data fusion

Data qualification, aggregation and completion
- Intelligent processing of traffic data
- Real-time traffic situation
- Traffic forecast

Service generation
- Information transmission to various receivers
- Management of customer relation

Use of data for traffic management

Use of data for traffic information
Public-Private Operation Models for Traffic Management and Traffic Information in Germany

The Netherlands (Population: 18 Million)
Operation of TMC4U – Traffic Information Services for Car Navigation Devices
Contract: since 2003

North Rhine Westphalia (Population: 15 Million)
Contract: 2004-2017

City of Berlin/Brandenburg (Population: 6 Million)
VMZ Berlin – Design, Build and Operation of Traffic Management Systems and Traffic Information Services
Contract: 2000-2010

Province of Bavaria (Population: 12 Million)
VIB Bavaria – Design, Build and Operation of Traffic Management Systems and Traffic Information Services

In PPP Siemens is taking the lead as industry partner for public authorities

© Siemens I&S, 2006
Berlin: Integrated Traffic Control and Mobility Management

Traffic Information
- FCD
- VMZ

Traffic Control
- VKRZ
- Monitor, Control & Manage
- Optimized Traffic Control

Common Data Pool
- Traffic Info
- Intermodal Routing

Integrated Mobility Management

© Siemens I&S, 2006
Berlin: Integration of New and Existing Systems

- Inconvenient control of UTC subsystems
 - 22 old traffic control systems by different manufacturers
 - Limited possibilities for global traffic strategies across various independent UTC

- Challenges
 - No change to existing systems
 - Once a connection is severed, it can not be reestablished
 - Step-wise substitution approach
Ruhrpilot: Regional Network of Traffic Management Systems

5500 km² area
- 15 Cities
- 42 Municipalities
- 13 Transit operators

Objectives
- Monitor mobility conditions
- Provide mobility services
- Define and deploy cross-jurisdictional transportation management strategies
Complexity along 3 Dimensions: Commercial, Administrative and Technological

Commercial

PPP contract

Private Partner
- System development, installation, maintenance
- Operations and services (free and commercial) until 2017

Public Partner
- Asset owner
- Control installation & services
- Quality management
Joint Forces Leverage the Deployment of Traffic Management Systems and Traffic Information Services

Siemens is committed to cooperating with public authorities

Traffic Data Collection
- Design, Build: Public
- Operation: Private

Traffic Management System
- Design, Build: Private
- Operation: Public

Traffic Information
- Design, Build: Free of charge services
- Operation: Value added services
Complexity along 3 Dimensions:
Commercial, Administrative and Technological

- **Administrative**

 Agreements
 - Availability of traffic data for common road network
 - Scope of transport management strategies
Complexity along 3 Dimensions: Commercial, Administrative and Technological

Technological

Data processing at central level
- Information Communication
- Databases
- Forecast & simulation
- Geo-Information System
- Traffic editorial office

Data aggregation and processing at municipal level
- Municipal data concentrator
- Traffic control centre motorway
- Control center of public transport operators
- Passenger information

Data entry individual traffic
- Detection
- UTC
- PGS
- Roadwork Information systems

Data entry public transport
- operation control centre
- Automatic Train Operation
- Passenger Information
- message data

Data acquisition and collection
Environmental Traffic Management

Input
- Pollution measurements
- Direct Measurements
- Air Quality Model

Output/Result
- Punctual pollution data
- Pollution situation for an urban area
- Critical spots, typical scenarios

Today
- Realtime Traffic Data, meteorology, topology, ...
- Sensor data, modeled data
- Defined traffic strategies

Next Day
- Strategy Implementation
- Verification
- Actual situation, expected situation

Operative Traffic Management
- Concrete traffic strategy
- Actions for operative traffic management

Result
- Improved traffic strategies
Conclusion

- Traffic management, information and control solutions
 - Integration is more than the sum of single parts ...
 - Traffic management, information and control on a single platform

- Various aspects of integration
 - Functional
 - Spatial / regional
 - Old and new

- Lessons learned
 - PPP contracts with high accuracy, tailored to the project specifics
 - Preserve and integrate existing infrastructure
 - Take into account the local transport policy and political guidelines

System modularity and open interface are Siemens SITRAFFIC CONCERT’s highly valued features
Thank you for your attention

Hans-Joachim Schade

Siemens AG
Industrial Solutions and Services
Intelligent Traffic Systems
Munich
hans-joachim.schade@siemens.com