SIEMENS

Co-operation Traffic Management and Traffic Information

Hans-Joachim Schade Siemens AG, I&S, Munich

International Seminar on Intelligent Transport Systems in Road Network Operations
Kuala Lumpur, Malaysia
14 to 16 August 2006

- The Idea Behind Traffic Management
- Traffic Management Capability
- Traffic Information Capability
- Traffic Management and Traffic Information on a Single Platform
- Complexity along three Dimensions
- Public-Private Operation Models for Traffic Management and Traffic Information
- Conclusion

The Multi-Level System Architecture

The Idea Behind Traffic Management

- Cities run various independent traffic systems
- Most systems do not interchange data
- A TMS integrates these systems into a single application
- Traffic Management thereby provides the basis for

1 Cross-System Traffic Strategies

&

2 Distribution of Traffic Information

How Can Traffic Management Help Your City?

- Achieve collaboration & central control of existing, independent traffic subsystems
- Comprehensively monitor & visualize traffic conditions in real time
- Provide value-added traffic information services to the public
- Improve road safety through incident detection & response management
- Prevent and actively fight congestion by intelligently influencing traffic on the road
- Demonstrate civil responsibility through a pro-active approach to traffic improvement

Traffic Management Capability

Traffic Information Capability

Traffic Management and Traffic Information on a Single Platform

The Value Chain for Integrated Traffic Management & **Traffic Information Services**

Traffic Data Collection

Traffic Management System (e.g. Siemens CONCERT)

Traffic Information

Acquisition and collection of relevant data from various sources

Data fusion

Car Data

Data qualification, aggregation and completion

Intelligent processing of traffic data

- Real-time traffic situation
- Traffic forecast

Service generation

- Information transmission to various receivers
- Management of customer relation

Use of data for traffic management

Use of data for traffic information

Public-Private Operation Models for Traffic Management and Traffic Information in Germany

The Netherlands

(Population: 18 Million)
Operation of TMC4U –
Traffic Information
Services for Car
Navigation Devices
Contract: since 2003

City of Berlin/Brandenburg

(Population: 6 Million)

VMZ Berlin - Design,

Build and Operation of

Traffic Management

Systems and Traffic

Information Services

Contract: 2000-2010

North Rhine Westphalia

(Population: 15 Million)

Ruhrpilot - Design, Build and Operation of Traffic

Management Systems and

Traffic Information

Services across 15 cities incl. Freeways, Urban Areas,

Public Transport

Contract: 2004-2017

Province of Bavaria

(Population: 12 Million) **VIB Bavaria – Design**,

Build and Operation of Traffic Management Systems and Traffic Information Services

Contract: 2006-2015

In PPP Siemens is taking the lead as industry partner for public authorities

Berlin:

Integrated Traffic Control and Mobility Management

Integrated Mobility Management

Berlin:

Integration of New and Existing Systems

- Inconvenient control of UTC subsystems
 - 22 old traffic control systems by different manufacturers
 - Limited possibilities for global traffic strategies across various independent UTC

Challenges

- No change to existing systems
- Once a connection is severed, it can not be reestablished

Step-wise substitution approach

© Siemens I&S, 2006 ▶ 13

Ruhrpilot:

Regional Network of Traffic Management Systems

5500 km² area

- Cities 15
- Municipalities
- Transit operators

Objectives

- Monitor mobility conditions
- Provide mobility services
- Define and deploy cross-jurisdictional transportation management strategies

Complexity along 3 Dimensions: Commercial, Administrative and Technological

Commercial

Joint Forces Leverage the Deployment of Traffic Management SIEMENS Systems and Traffic Information Services

Siemens is committed to cooperating with public authorities

Complexity along 3 Dimensions: Commercial, Administrative and Technological

Administrative

Agreements

- Availability of traffic data for common road network
- Scope of transport management strategies

Complexity along 3 Dimensions: Commercial, Administrative and Technological

<u>Technological</u>

Environmental Traffic Management

© Siemens I&S, 2006 ▶ 19

Traffic management, information and control solutions

- Integration is more than the sum of single parts ...
- Traffic management, information and control on a single platform

Various aspects of integration

- Functional
- → Spatial / regional
- Old and new

Lessons learned

- → PPP contracts with high accuracy, tailored to the project specifics
- Preserve and integrate existing infrastructure
- → Take into account the local transport policy and political guidelines

System modularity and open interface are Siemens SITRAFFIC CONCERT's highly valued features

SIEMENS

Thank you for your attention

Hans-Joachim Schade

Siemens AG Industrial Solutions and Services Intelligent Traffic Systems Munich hans-joachim.schade@siemens.com