International Seminar on Recycling Warsaw, 10 - 11 October 2002

GUIDELINE ON IN SITU RECYCLING WITH CEMENT

Carlos Jofré IECA, Spain

GUIDELINE ON IN SITU RECYCLING WITH CEMENT

• Working group

Australia France Spain	Austria Germany United Kingdom	Belgium Greece
• Contributions		
Canada South Africa	Czech Republic Switzerland	Japan USA

GUIDELINE ON IN SITU RECYCLING WITH CEMENT

- Introduction
- Preliminary studies
- Properties of cement bound recycled materials
- Mix design
- Thickness design
- Machinery for recycling
- Execution of the work
- *Quality control*
- Cost analysis

INTRODUCTION

- Common part on pavement recycling
 - Definition
 - Historical development
 - Objectives
 - Types
 - Advantages and limitations of in situ recycling
- Particular features of in situ recycling with cement

CEMENT RECYCLING

- Purpose:

Transforming a degraded and heterogeneous pavement into

a consistent and more homogeneous structure, adequate to actual traffic,

by milling, mixing with a hydraulic binder and compaction

Guideline on In Situ Pavement Recycling With Cen

PARTICULAR FEATURES OF IN SITU RECYCLING WITH CEMENT

- *Deep treatment (20 35 cm):*
 - substantial increase of bearing capacity
 - *great decrease of*
 - pavement deflections
 - subgrade strains and stresses
 - correction of deformed pavements (ruts)

Guideline on In Situ Pavement Recycling With Cen

 Shrinkage cracking → joints (precracking)

HISTORICAL DEVELOPMENT

- Antecedent → retread process (U. K.)
- Development since middle of 80s:
 - better knowledge of cement treated materials
 - *more powerful and reliable equipment*
 - increasing ecological concern

Guideline on In Situ Pavement Recycling With Cemen

IN SITU RECYCLING WITH CEMENT

The Spanish experience

- First work: 1991 (non - Spanish contractor)
- First recycling equipment: 1996
- *Currently: 22 recyclers*

PRELIMINARY STUDIES

- Examination of the existing road
- Core sampling
- Characterization of the materials (grading, plasticity, moisture content, setting inhibitors)
- Drainage and climate
- Traffic
- Widening works

MECHANICAL PROPERTIES OF CEMENT RECYCLED MATERIALS

- Compressive strength
- Modulus of elasticity

Guideline on In Situ Pavement Recycling With Cemen

CEMENT RECYCLED MATERIALS Strength

- Factors:
 - cement content
 - existing materials (quality of aggregates, clay, % bituminous mix)
 - effectiveness of milling and mixing processes
 - moisture
 - dry density after compaction
 - age

CEMENTS

- Desirable characteristics:
 - high active addition content
 - low medium strength
 - slow strength development at early ages
- *Preferred cements:*
 - CEMIV, CEMII (EN 197-1 Standard)
 - hydraulic road binders (EN 13282 Standard)

PAH polycyclic hydro–carbons in leachate tar–bearing material stabilized with 5 %

CEMENT - RECYCLED MATERIALS Cement content

Guideline on In Situ Pavement Recycling With Cement

- The minimum to obtain the required strength (2.5 MPa at 7 days; 4 6%)
- Use "aggregates" with expected grading after milling (+ grading corrector, if needed)

THICKNESS DESIGN

- Information to use existing methods

 multilayer models (E, v)
 - Structural coeeficients (AASHTO)
- Catalogues of pavement sections (Spain) Design curves (UK)

Guideline on In Situ Pavement Recycling With Cement

MACHINERY FOR RECYCLING

- First phase: specific machines
 - cement distributors (powder, slurry)
 - recyclers (milling and/or mixing machines)
- Second phase: similar to other cement-treated layers
 - [equipment for precracking]
 - rollers
 - graders
 - emulsion tankers

Guideline on In Situ Pavement Recycling With Cemer

CEMENT SPREADERS

- Spreaders for powdered cement (self propelled, towed, coupled)
- Slurry feeders

 (cement hopper + water tank + slurry mixers + pump)
- New developments (direct injection of powdered cement ...)

RECYCLERS

- Stabilizers / recyclers
- Modified machines for pavement milling
- Double drum machines (milling drum + mixing drum)
- *Mixing machines of previously milled material*

• Recycling machines with milling drum, crusher and mixing drum

FRESH - MADE JOINTS Equipment

- Notches < 1/3 recycled depth (hand – guided or self - propelled)
 - vibrating plate with welded blade
 - vibrating roller with cutting flange or cutting disk
- Notches taking in most of recycled depth (self- propelled)
 - emulsion (CRAFT)
 - flexible plastic ribbon (Olivia)
 - rigid plastic profile (Active Joint)

Guideline on In Situ Pavement Recycling With Cem

EXECUTION OF THE WORKS

- Application of [imported aggregate and] binder
- Addition of water
- Milling and mixing
- [Precracking]
- Compaction
- Trimming
- Curing and protection seal
- Asphalt surfacing

COMPACTION

Guideline on In Situ Pavement Recycling With Cen

- Compact as soon as possible
 - avoid moisture losses (and increases)
 - not after end of workability period (bonding between recycling strips)
- Future pavement performance heavily dependent on adequate compaction (100 - 97 % Modified Proctor)
- *Use suitable equipment (test section)*

TRIMMING

- To eliminate surplus material To correct surface evenness
- Only remove Do not fill depressions with loose material
- Take into account trimming

 to estimate recycling depth(
 2 cm more)
 for workability period

CURING AND OPENING TO TRAFFIC

- Usually bituminous emulsion
- Spread chippings if traffic is allowed on top of recycled layer
- Opening to traffic after emulsion breakdown (some hours)
- Take measures (speed limitations) to avoid distresses
- Bituminous layers

Guideline on In Situ Pavement Recycling With Cem

QUALITY CONTROL

- Controls during construction
- Controls after construction

Guideline on In Situ Pavement Recycling With Cemen

FACTORS INFLUENCING COSTS

- *Size of the work:*
 - thickness
 - total area (mobilisation of equipment)
 - shape (regular, irregular)
- Characteristics of existing pavement
- Recycling equipment
- Cement content (cost, output) Guideline on In Situ Pavement Recycling With Cemen.

CEMENT RECYCLING vs OVERLAY Factors to be considered

- Total costs of construction
- Expected results from recycled material (strength ...)
- Final quality of new pavement (adequacy to present and future traffic)

Guideline on In Situ Pavement Recycling With Cem

- Availability of local materials
- Bridge clearance, side accesses ...

SUMMARY

- Cement recycled pavements:
 - less homogeneous than new ones
 - much homogeneou than existing ones needing to be rehabilitated
- Economical and reliable option
- Extensive experience in many countries

Guideline on In Situ Pavement Recycling With Cement

SUMMARY

- Satisfactory results if
 - recycled thickness 20 35 cm
 - distresses: from pavement not from subgrade
 - target compressive strength > 2.5 MPa

Guideline on In Situ Pavement Recycling With Cement

• Cement recycled materials similar to soilcement or cement treated bases (used for all traffic classes)

SUMMARY

- All types of cement can be used
- Existing bituminous materials can be recycled with cement (< 1/3 of total treated thickness)
- Precracking (joints) always advisable When really necessary?
- Specifications and/or design methods available in several countries

CONCLUSION

In situ recycling with cement should always be considered for the rehabilitation of fatigued pavements