GUIDELINE ON IN SITU RECYCLING WITH CEMENT

Carlos Jofré
IECA, Spain

INTRODUCTION

• Common part on pavement recycling
 – Definition
 – Historical development
 – Objectives
 – Types
 – Advantages and limitations of in situ recycling

• Particular features of in situ recycling with cement
CEMENT RECYCLING

- Purpose:
 Transforming a degraded and heterogeneous pavement into a consistent and more homogeneous structure, adequate to actual traffic, by milling, mixing with a hydraulic binder and compaction

PARTICULAR FEATURES OF IN SITU RECYCLING WITH CEMENT

• Deep treatment (20 - 35 cm):
 – substantial increase of bearing capacity
 – great decrease of
 • pavement deflections
 • subgrade strains and stresses
 – correction of deformed pavements (rut)
• Shrinkage cracking → joints (precracking)

HISTORICAL DEVELOPMENT

• Antecedent → retread process (U. K.)
• Development since middle of 80s:
 – better knowledge of cement treated materials
 – more powerful and reliable equipment
 – increasing ecological concern

IN SITU RECYCLING WITH CEMENT

The Spanish experience

• First work: 1991 (non - Spanish contractor)
• First recycling equipment: 1996
• Currently: 22 recyclers
PRELIMINARY STUDIES

- Examination of the existing road
- Core sampling
- Characterization of the materials (grading, plasticity, moisture content, setting inhibitors)
- Drainage and climate
- Traffic
- Widening works

MECHANICAL PROPERTIES OF CEMENT RECYCLED MATERIALS

- Compressive strength
- Modulus of elasticity

CEMENT RECYCLED MATERIALS

Strength

- Factors:
 - cement content
 - existing materials (quality of aggregates, clay, % bituminous mix)
 - effectiveness of milling and mixing processes
 - moisture
 - dry density after compaction
 - age

Influence of content of milled bituminous mix on compressive strength

- 28 days
- 1 year
CEMENTS

- **Desirable characteristics:**
 - high active addition content
 - low - medium strength
 - slow strength development at early ages

- **Preferred cements:**
 - CEM IV, CEM II (EN 197-1 Standard)
 - hydraulic road binders (EN 13282 Standard)

MIX DESIGN

- **Similar to other cement treated materials**
 - water content by mixture – density tests
 - cement content by compressive strength

- **Difficulties**
 - grading after milling
 - properties dependent on recycled thickness

- **Types of cement**
- **Workability time**

PAH
polycyclic hydro–carbons in leachate
tar–bearing material stabilized with 5 %
CEMENT - RECYCLED MATERIALS

Cement content

- The minimum to obtain the required strength
 (2.5 MPa at 7 days; 4 - 6%)
- Use “aggregates” with expected grading after milling
 (+ grading corrector, if needed)
- Specimens compacted at required density
 (modified Proctor compacting device)

THICKNESS DESIGN

- Information to use existing methods
 - multilayer models (E, v)
 - Structural coefficients (AASHTO)
- Catalogues of pavement sections (Spain)
 Design curves (UK)

MACHINERY FOR RECYCLING

- First phase: specific machines
 - cement distributors (powder, slurry)
 - recyclers (milling and/or mixing machines)
- Second phase: similar to other cement-treated layers
 - [equipment for precracking]
 - rollers
 - graders
 - emulsion tankers

CEMENT SPREADERS

- Spreaders for powdered cement
 (self - propelled, towed, coupled)
- Slurry feeders
 (cement hopper + water tank + slurry mixers + pump)
- New developments
 (direct injection of powdered cement ...)

Guideline on In Situ Pavement Recycling With Cement
RECYCLERS

- Stabilizers / recyclers
- Modified machines for pavement milling
- Double drum machines (milling drum + mixing drum)
- Mixing machines of previously milled material
- Recycling machines with milling drum, crusher and mixing drum
FRESH - MADE JOINTS

Equipment

- Notches < 1/3 recycled depth (hand – guided or self - propelled)
 - vibrating plate with welded blade
 - vibrating roller with cutting flange or cutting disk

- Notches taking in most of recycled depth (self - propelled)
 - emulsion (CRAFT)
 - flexible plastic ribbon (Olivia)
 - rigid plastic profile (Active Joint)

EXECUTION OF THE WORKS

- Application of imported aggregate and binder
- Addition of water
- Milling and mixing
- Precracking
- Compaction
- Trimming
- Curing and protection seal
- Asphalt surfacing
COMPACTION

- Compact as soon as possible
 - avoid moisture losses (and increases)
 - not after end of workability period (bonding between recycling strips)
- Future pavement performance heavily dependent on adequate compaction (100 - 97 % Modified Proctor)
- Use suitable equipment (test section)

TRIMMING

- To eliminate surplus material
 - To correct surface evenness
- Only remove
 - Do not fill depressions with loose material
- Take into account trimming
 - to estimate recycling depth (1 - 2 cm more)
 - for workability period

CURING AND OPENING TO TRAFFIC

- Usually bituminous emulsion
- Spread chippings if traffic is allowed on top of recycled layer
- Opening to traffic after emulsion breakdown (some hours)
- Take measures (speed limitations) to avoid distresses
- Bituminous layers
FACTORS INFLUENCING COSTS

- Size of the work:
 - thickness
 - total area
 - (mobilisation of equipment)
 - shape (regular, irregular)
- Characteristics of existing pavement
- Recycling equipment
- Cement content
 - (cost, output)

COST SPLITTING

5 to 15% less expensive than overlay or reconstruction

QUALITY CONTROL

- Controls during construction
- Controls after construction
CEMENT RECYCLING vs OVERLAY

Factors to be considered

- Total costs of construction
- Expected results from recycled material
 (strength ...)
- Final quality of new pavement
 (adequacy to present and future traffic)
- Availability of local materials
- Bridge clearance, side accesses ...

SUMMARY

- Cement recycled pavements:
 - less homogeneous than new ones
 - much homogeneous than existing ones
 needing to be rehabilitated
- Economical and reliable option
- Extensive experience in many countries

SUMMARY

- Satisfactory results if
 - recycled thickness 20 - 35 cm
 - distresses: from pavement
 not from subgrade
 - target compressive strength > 2.5 MPa
- Cement recycled materials similar to
 soilcement or cement treated bases
 (used for all traffic classes)

SUMMARY

- All types of cement can be used
- Existing bituminous materials can be
 recycled with cement
 (< 1/3 of total treated thickness)
- Precracking (joints) always advisable
 When really necessary?
- Specifications and/or design methods
 available in several countries
CONCLUSION

In situ recycling with cement should always be considered for the rehabilitation of fatigued pavements.