Road Rehabilitation Projects in Mongolia

International Seminar on the appropriate use of Natural Materials in Roads

Ulaanbaatar, Mongolia
18-21 June, 2002

Road Rehabilitation Projects in Mongolia

by
Dr. Hans Christian Korsgaard, Carl Bro a/s
Resident Engineer Peter Burn, Carl Bro a/s
Resident Engineer Kurt Nielsen, Carl Bro a/s

Denmark
Road Rehabilitation Projects in Mongolia

Our work in Mongolia is the Technical Assistance to the Supervision Teams on 4 projects:

1. 215 km of Rehabilitation the road between Erdenesant and Arvaiheer.

2. The upgrading 86 km to an all weather road between Kharkhorin and Tosontsengel.

3. The upgrading of 93 km to an all weather road between Arvaiheer and Khovd.

4. Technical Assistance for the preparation of 3 year rolling maintenance plan.
Road Rehabilitation Projects in Mongolia

Map of our Project Roads
The detail of the specified types of reconstruction used on the project are as follows:

Type 1:
- Crack sealing
- Patching
- Surface dressing
- Shoulder treatment
Road Rehabilitation Projects in Mongolia

The detail of the specified types of reconstruction used on the project are as follows:

Type 2:
• Crack sealing
• Patching
• Shoulder treatment
• Tack coat and asphalt regulating
• 50 mm of asphalt wearing course
Road Rehabilitation Projects in Mongolia

The detail of the specified types of reconstruction used on the project are as follows:

Type 3:

• Excavation of existing surface

• 150 mm of crushed stone basecourse

• Prime coat

• 50 mm of asphalt wearing course
The detail of the specified types of reconstruction used on the project are as follows:

Type 4:

- Excavation of existing surface
- 200 mm Nonfrost layer
- 200 mm Subbase
- 200 mm Basecourse
- Prime coat
- 50 mm of asphalt wearing course
Road Rehabilitation Projects in Mongolia

Potholes and shoulders
Road Rehabilitation Projects in Mongolia

Wheel tracks – asphalt shoving
Road Rehabilitation Projects in Mongolia

Excavation of existing road showing the depth of the old pavement
Road Rehabilitation Projects in Mongolia

Base course laying
Road Rehabilitation Projects in Mongolia

Compaction of base course
Road Rehabilitation Projects in Mongolia

Close up of finished base course surface
Road Rehabilitation Projects in Mongolia

Base course segregation
Segregation probably causes:

- less bearing capacity of the E-modulus in the layer which will cause faster deterioration of the above layers and relatively thicker overlay thickness when needed

- also risk particles break down and will penetrate into the voids between the other particles settlement and lower bearing capacity in the above unbound layer.
Road Rehabilitation Projects in Mongolia

Unbound layer requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles</td>
<td>< 25%</td>
</tr>
<tr>
<td>Compaction degree, modified Proctor</td>
<td>> //</td>
</tr>
</tbody>
</table>
Road Rehabilitation Projects in Mongolia

Asphalt aggregate requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Abrasion</td>
<td>Max 25</td>
</tr>
<tr>
<td>Aggregate Crushing Value</td>
<td>Max 25</td>
</tr>
<tr>
<td>Sodium Sulphate Soundness</td>
<td>Max 12</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>Max 2%</td>
</tr>
<tr>
<td>Flakiness Index</td>
<td>Max 20</td>
</tr>
</tbody>
</table>
Road Rehabilitation Projects in Mongolia

Result of segregation

- Less bearing capacity probable of lower E-modulus in the layer which cause relatively faster deterioration of the above layers and result in a thicker overlay being required in the future.

- Risk that particles break down and penetrate into the voids between the other particles causing settlement within the layer.

- Risk that the fines from the above unbound layer penetrate into the segregated layer, causing settlement and lower bearing capacity in the above unbound layer.
Graded crushed stone base material

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticity Index</td>
<td>Max 6</td>
</tr>
<tr>
<td>Plasticity Product</td>
<td>Max 45</td>
</tr>
<tr>
<td>Sodium Sulphate Soundness</td>
<td>Max 12</td>
</tr>
<tr>
<td>Los Angeles Abrasion Value</td>
<td>Max 30</td>
</tr>
<tr>
<td>Flakiness Index</td>
<td>Max 35</td>
</tr>
<tr>
<td>Ten percent Fines Value</td>
<td>Min 110 kN</td>
</tr>
<tr>
<td>CBR after 4 day soak at 100% MDD</td>
<td>Min 90%</td>
</tr>
</tbody>
</table>
Road Rehabilitation Projects in Mongolia

Necessary quality of natural aggregates means the appropriate quality level for aggregates for roads are the level which is based on technology financial and environmental matters are taken into consideration:

- Technological consideration
- Environmental consideration
- Economical consideration

Under the right construction conditions aggregates of lesser quality can be used for highways as well as heavy duty pavements.
Road Rehabilitation Projects in Mongolia

Typical defects seen in older and new roads:

• Shoving
• Rutting
• Cracks
• Deformation
• Potholes
• Deterioration
• Shoulder erosion
Road Rehabilitation Projects in Mongolia

Road defects are primarily caused by:

• Frost heave
• Freeze / thaw
• Water penetration
• Low compaction degrees
• Improper material composition
• Weak materials
• Hard binders / soft binders
How to avoid the problems?

• Appropriate use of the materials and what does it mean:
 • Appropriate design
 • Appropriate material requirements
• Appropriate quality control by the Contractor
• Appropriate quality control by the Client
Road Rehabilitation Projects in Mongolia

Acknowledgements:

- Directors of the Department of Roads

- Mr. Chuluun Damdin, World Bank Coordinator

- Mr. Lhamjav Gombo, Head of Planning Research Division DoR

- Mr. D. Baasankhuu, The Project Manager

- Mr. N. Adilbish, Head of Maintenance Division DoR