

# Sustainability and unique construction properties: two major trends in modern concrete technology

François de Larrard

Scientific Director LafargeHolcim Research Centre (LCR), Lyon, France



# The LafargeHolcim Group – A short introduction

- A world leader in building materials
- From the merger of Lafarge and Holcim (in 2015)
- Products
  - Cement (No. 1 out of China)
  - Aggregate

- Ready-mix concrete
- Other products (mortars, asphalt, precast products etc.)
- Active over the 5 continents
- Turnover ≈ 28,5 B CHF
- Employees ≈ 80,000



# LafargeHolcim R&D



# The LafargeHolcim global Research Center in Lyon (France)

is the most sophisticated R&D facility in our industry.



A network of local Construction Development Labs and technical centers, close to our markets:

Algeria, Argentina, China, France, India, Malaysia, Mexico, Morocco



We partner with leading academics, customers, start-ups and suppliers

to jointly develop new technologydriven construction solutions for our customers.



#### **Main missions**

Creating value for our end users and customers with innovative solutions Anticipating trends and new technologies

Transferring innovation to local markets

1,500 patents\*

\*Granted patents or patent applications

#### **Outline**

- Introduction
- Unique Engineering properties
  - Ease of placement
  - Strength at early age
  - Ultra high-performance (strength and durability)
- Sustainability
  - Resource preservation
  - Climate change mitigation
  - Water management, air quality, well-being
  - Life-cycle cost management through specified durability
- Conclusion



#### Introduction

- Concrete is the first construction material worldwide (in volume). Also the first material for bridges
- Invented by the Roman ancients, constantly evolving since the beginning of industrial era (late XIXth century)
- The problem we are facing as producers: how to better address the construction needs while taking care of sides effects on people and environment?
- A short review of solutions either commercially available or at a development stage

# Unique engineering properties



# **Ease of placement**

- Self compacting concrete invented in the late '80 in Japan
- With SCC
  - no more vibration
  - no consolidation flaws
  - better concrete facings
  - $20 \le fc_{28} \le 80 \text{ MPa}$  and more
- For bridges, suitable for piles, pylons etc.
- Lafarge among the first companies to industrialise and widely distribute robust self-compacting concrete mixes (Agilia™)



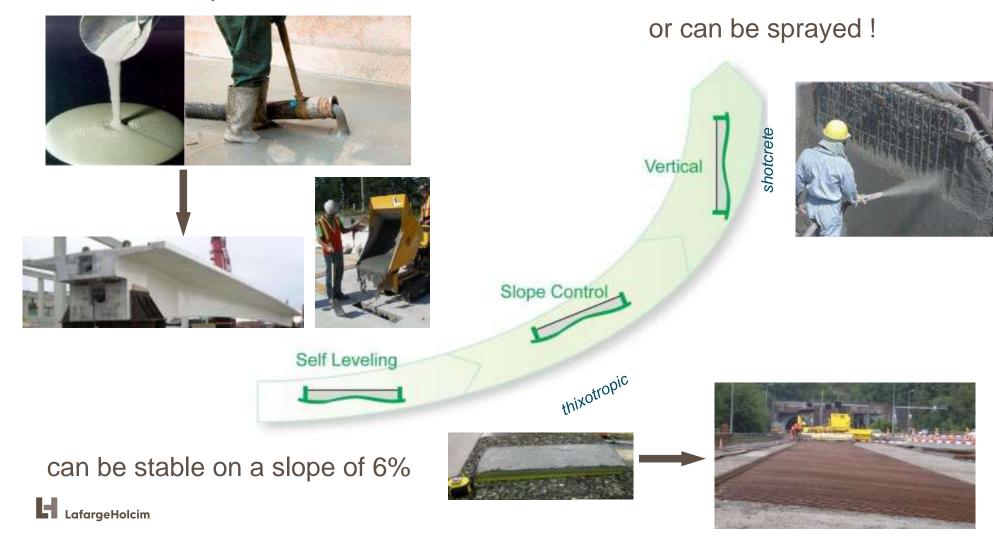
"Marilyn Monroe" towers in Toronto, Canada

# Strength at early age

- Accelerated mixes to remove forms as early as 8h or even 4h after batching
- Management of workability window according to transportation and placement constraints (1 to 2 hours)
- For structural concrete, Portland cement (not CAC = calcium-aluminate cements)
- No increase of heat of hydration nor further risk of cracking



The Port
Mann bridge,
British
Colombia,
Canada
incorporates
Chronolia™


# Ultra-high performance concrete (UHPC): mix-design basics

- Selected constituents
  - Fine sand (< 1 mm)</li>
  - Cement
  - Mineral and organic admixtures
  - (steel) fibres
- Optimisation of packing density
- Ultra-low water/binder ratio
- Long mixing
- For precast applications: possible thermal treatment to foster final strength

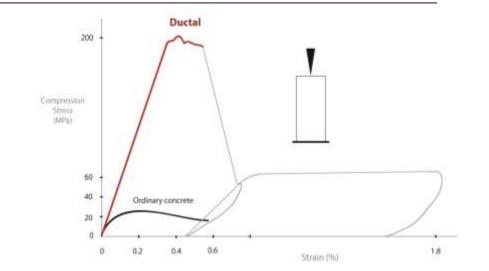


# **UHPC**: fresh concrete properties

Can be self-placeable...



# Ultra-high performance concrete: hardened concrete properties


## **Mechanical properties**

- $100 \le \text{fc}_{28} \le 200 \text{ MPa}$ (with thermal treatement)
- Flexural strength up to 50 MPa
- Design tensile strength ≈ 10 MPa

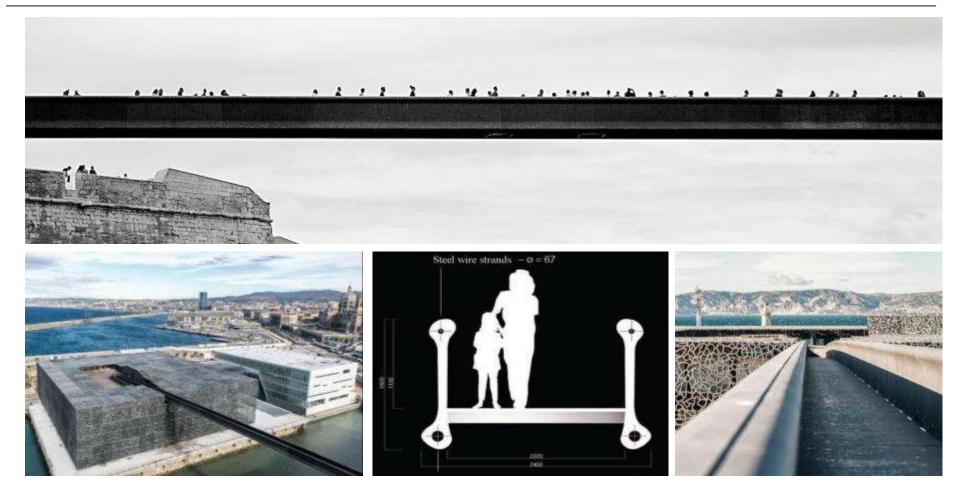
**Durability-related properties** (as compared to normal-strength structural concrete)

- Gas permeability /100
- Chloride diffusivity /50
- Carbonation








# **UHPC**: application to bridge engineering

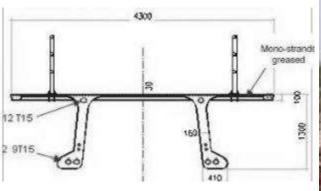
- Long-span prestressed beams
- Thin arches
- Connection of precast slabs
- Overlays for deck reinforcement and protection
- Precast slabs for widening
- Blisters for added external prestressing
- Piles jacketing to increase bearing capacity or to protect against corrosion

• ...

# MuCEM- Marseille - France





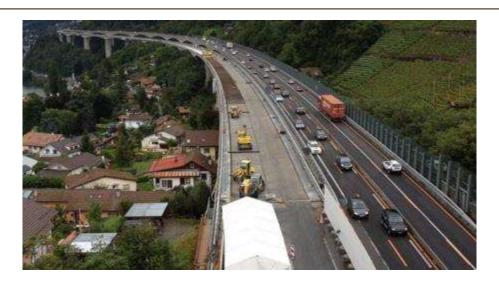


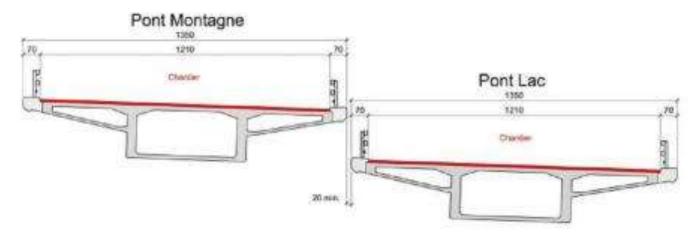

# Peace Footbridge - Seoul












# **Chillon Viaducts: Overlay**









# **Bridge Extension : Precast UHPC slabs**

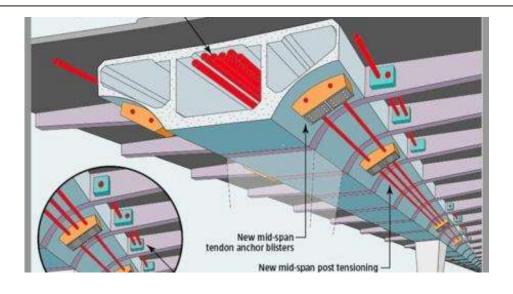








# Piles jacketing to increase bearing capacity





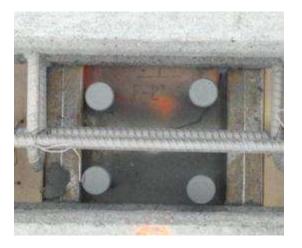



# **Hammersmith Flyover – London**





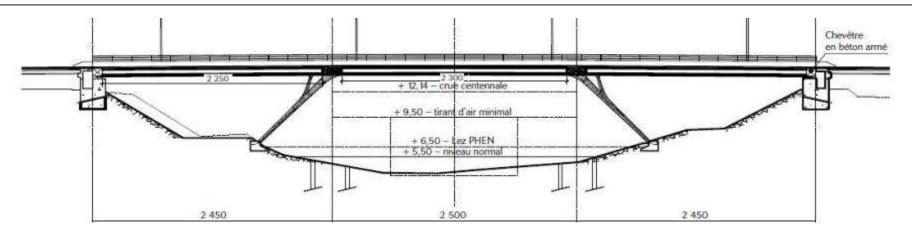





# Joint Fill/Shear Pocket












# Pont de la République - France













# Mars Hill Bridge - Ohio - USA

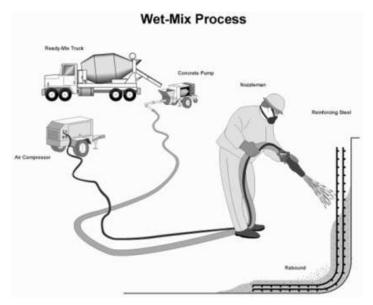











# **LH / Freyssinet partnership – On-site tests**



#### **Ductal Shotcrete**









# Sustainability



# Ressource preservation in cement manufacturing

- Saving raw materials and energy using alternative raw/fuel materials to produce clinker: biomass, industrial wastes, tyres etc.
- Partial replacement of clinker by supplementary cementitious materials: fly ash, blastfurnace slag, limestone, metakaolins etc.
- Current data for LafargeHolcim:
  - Rate of alternative fuels: 15%
  - % of clinker substitution in cement :
    28 %



# Resource preservation: recycling concrete into concrete

- Need to save natural aggregates + to avoid landfilling in many parts of the world + to reduce transportation distances for aggregates
- Recycling: crushing end-of-life reinforcedconcrete pieces and using obtained aggregate either in a new concrete or in cement manufacturing
- Technically, replacement rate can range from 0 to 100 % (0-30 % of coarse aggr. according to European Standard EN 206)
- At low %, marginal effect on concrete properties. Most impacted ones: E-modulus, shrinkage and creep
- Can be envisaged in some parts of the bridges (foundations, massive piles etc.) subject to acceptance by authorities



aggneo™

# Climate change mitigation: low CO<sub>2</sub> cement

- Yes cement bears 5-8 % of anthropogenic CO<sub>2</sub>
- 1st strategy:
  - to combine alternative fuel with supplementary cementitious materials
  - LH commitment: to reach 490 kg/t of CO<sub>2</sub> in 2030 (1990: 770; 2016: 580)
- 2<sup>nd</sup> strategy: to develop non-Portland cement.
  - Aether<sup>™</sup> is a belite-ye'elemite-ferrite (BYF) cement with a carbon footprint reduced by 30% (development stage at LH)
  - Axel is a calcium-sulfo-aluminate (CSA) cement (id.)
  - Solidia<sup>™</sup>: a cement which hardens through carbonation, not hydration. More than 60 % saving in CO<sub>2</sub> (first commercial applications in the range of thin precast products)



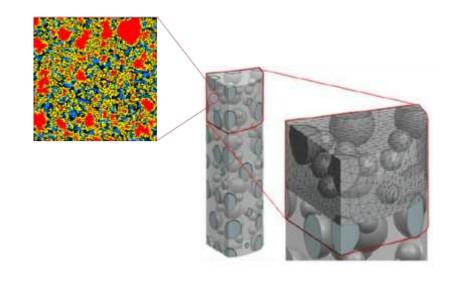
# Climate change mitigation: low CO2 concrete and structures

- Concrete with low cement dosage at controlled engineering properties through
  - Mix optimisation: best packing, superplasticizers, SCM
  - High level QC
  - Low workability + intense vibration (prefabrication)
- Smart structural design
  - Use of HPC/UHPC
  - Less matter, more stresses





# Water management, air quality, well-being


- Water management: need to reduce the concrete water footprint (currently ≈ 400 l/m³ of concrete)
  - Substitute water curing by other techniques
  - Use of non-potable water in critical areas
- Air quality: existing technologies to decrease NOx/VOC
  - Photocatalysis (TiO<sub>2</sub>). Works but needs UV radiations
  - LH Depolluting technology based on active charcoal into concrete (under development)
- Biophilly: new LH vegetalized concrete
  - Double-layer concrete with a porous external layer
  - Plants growing in it, watered by concrete porosity
  - An affordable way to bring nature into cities (under development)





# Life-cycle cost management through specified durability

- From prescriptive to performancebased approach
- Focus on key material properties (permeability, CI- diffusivity, carbonation) to predict reinforcement corrosion
- Three complementary approaches by LH:
  - Material testing
  - Mix-optimisation to match durability specifications
  - Modeling of corrosion initiation time



### Conclusion

- More than ever, concrete is the key material for infrastructures
- It has evolved for a century, preceding or following the progress in structural design
- Workability, strength and durability can be fully tuned within a wide range to fit the construction needs
- However, the contemporary engineer must take not only the final goal into account, but also environmental and social aspects
- This challenge can only be addressed through a cooperation of all involved stakeholders (owners, builders, and material providers)

# Thank you for your kind attention!



# ¡Muchas gracias por su atención!

