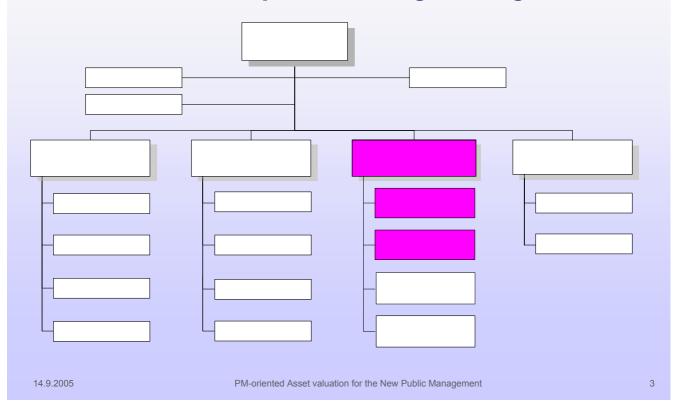
io noiterioleV ixetnos e ni serutsurtserini inempoleveb eldenicisus io

PIARC - Seminar on URBAN PAVEMENTS -CRACOW (Poland) 21-22 September, 2005

> Martin Bürgi, dipl. Ing. ETH/NDS Jürg Pfyl, dipl. Ing. ETH Dirk Göbbels, dipl. Ing. Patrik Hitz, dipl. Ing. ETH/NDS

City of Zurich
Department of Civil Engineering

City of Zurich


Facts on the city of Zurich:

Population: 340'000

Area: **88 km**²

Yearly budget: **€4.5 billion**Road length: **737 km**

Structure of the Dep. of Civil Engineering

City of Zurich Department of Civil Engineering

Maintenance task

Warranting an adequate maintenance of the road network means performing the road manager's function.

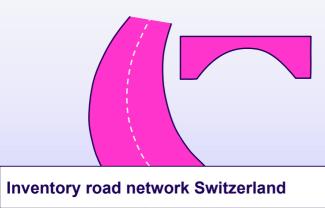
Responsibility


- Economic and sustainable use of the taxpayer's money for the maintenance of the road infrastructure
- Ensure structural safety

Tasks

- Bookkeeping of inventories
- Inspection, condition rating and intervention planning
- Initiation of maintenance measures, representation in joint project teams (coordination)
- · Support of externally executed projects
- · Quality control of measures taken
- Project manager (privately executed projects)

Competences


Determine type of measure and time of intervention

City of Zurich Department of Civil Engineering

Different viewpoints

- Engineering /

 Material Technology
- **◄** Project view
- Accounting view
- **◄** Data-oriented view
- Operational accounting view

 Legal classification
 Length
 Replacement value

 City roads
 51,400 km
 €150 – 300 billion

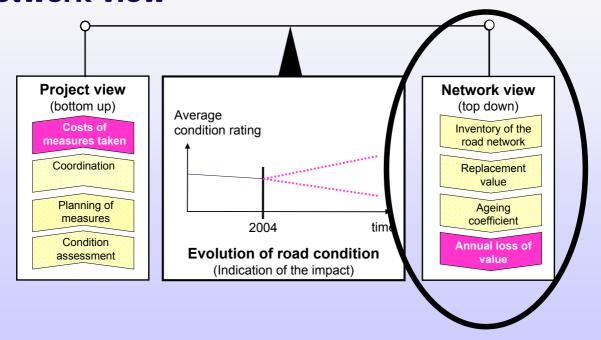
 Canton roads
 18,200 km
 €80 – 150 billion

 National roads
 1,700 km
 €120 billion

M-oriented Asset valuation for the New Public Management

City of Zurich
Department of Civil Engineering

14.9.2005

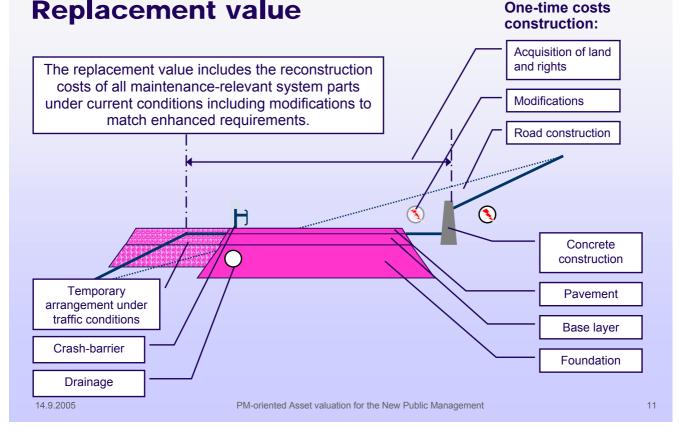


Basic model for Maintenance

The functioning and quality of the road network can be

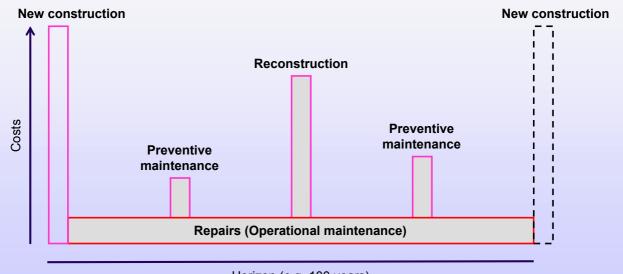
Network view

14.9.2005


PM-oriented Asset valuation for the New Public Management

City of Zurich Department of Civil Engineering

Inventory


Road network city of Zurich	: >		jects	Area m²
(Responsible: Department of civil engine	ering)	km	Number	
Total Roads				7'761'000
Traffic lanes		737		5'301'000
Pedestrian bycicle lanes				2'460'000
Total Civil Engineering Structures			^{a)} 643	295'278
Bridges			113	133'028
Overpasses			198	25'298
Underpasses			8	12'932
Culvets			126	5'074
Road tunnels			4	17'764
Utility tunnels			13	11'347
Pedestrian subways			81	29'287
Riverside structures		9.6	k.A.	44'548

City of Zurich Department of Civil Engineering

Ageing coefficient: Methodology

Horizon (e.g. 100 years)

Annual loss of value: Roads

Roads			Area	Replacement value		Loss of value Ageing		
Traffic volume	Urbanistic requirements	km	m ²	€/m ²	Mio. €	coefficient in %	Mio. €	
Total road	s		7'761'000		1,189	2.2%	26	
Total lanes	;	737	5'301'000	200	1,029	2.2%	23	
> T4	normal		1'339'383	220	295	2.6%	8	
T3, T2	normal		925'324	190	176	2.1%	4	
T1	normal		2'129'190	170	362	1.9%	7	
> T4	enhanced		426'301	230	98	2.6%	3	
T3, T2	enhanced		330'798	210	69	2.1%	1	
T1	enhanced		150'371	190	29	1.9%	1	
Pedestrian/	bicyle lanes		2'460'000	65	160	1.8%	3	

14.9.2005

PM-oriented Asset valuation for the New Public Management

13

City of Zurich Department of Civil Engineering

Annual loss of value: Civil Engineering structures

Civil Engineering Structures	Objects	Areas	Replacement Value:		Loss of value Ageing	
	Number	m ²	€/m ²	Mio. CHF	coefficient in %	Mio. €
Total Civil Engineering structures	643	295'278		1'304	1.5%	11.5
Bridges	113	133'028	2'840	585	1.6%	6.1
Overpasses	198	25'298	1'800	71	1.6%	0.7
Underpasses	8	12'932	2'700	54	1.9%	0.6
Culvets	126	5'074	2'840	22	1.5%	0.2
Road tunnels	4	17'764	5'100	140	1.3%	1.2
Utility tunnels	13	11'347	1'740	31	1.2%	0.3
Pedestrian subways	81	29'287	2'320	105	1.8%	1.2
Riverside structures	k.A.	44'548	3'120	216	0.9%	1.2
Retaining walls ^{a)}	100	16'000	3'230	80	?	?

Management-oriented asset valuation

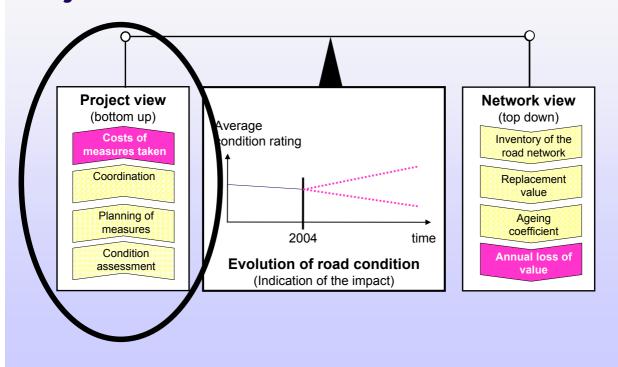
Advantages of the valuation of the existing assets (and hence the replacement value):

- Discounting can be omitted (Determination of the present value ist time consuming and difficult for roads)
- The annual loss of value, derived from the replacement value, can directly be compared to the costs of the annually implemented measures
- 3. Asset value (loss of value) and implemented measures are on the same (actual) cost level

14.9.2005

PM-oriented Asset valuation for the New Public Management

15


City of Zurich Department of Civil Engineering

Standards in preparation

Object view

14.9.2005

PM-oriented Asset valuation for the New Public Management

17

City of Zurich Department of Civil Engineering

Condition assessment

Inspection, condition rating (PMS)

Basics

• Swiss standard 640 925b for visual inspection

Scope

Only traffic lanes (sidewalks excluded)

Only measures for maintenance (no repairs)

Structure

Legal classification, traffic volume and district

Sections

 Generation of sections on site in line with measures to be proposed

Geometry

 Basic geographical data (GIS) from City surveying office (AV 93): Area instead of axes

Implementation

- · Inspection and rating by own employees
- Tri-annual complementation. A third of the network per year
- No updating at the moment (just current assessment)
- · No administration tasks by experts

14.9.2005

PM-oriented Asset valuation for the New Public Management

19

City of Zurich Department of Civil Engineering

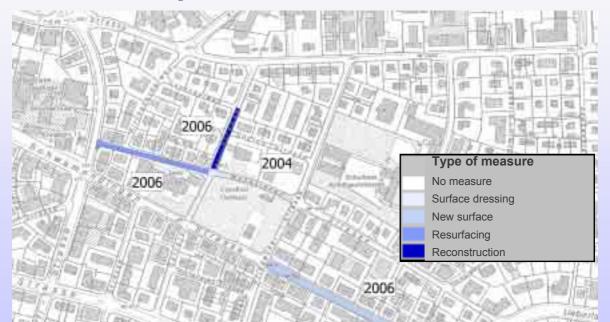
Condition overview with GIS

Intervention planning (PMS)

Proposal of measures

- · Defined for each section
- According to damage pattern and trends (surface, structure) on site

Four options


 Detailed planning in line with coordination (sampling, pavement design, different intervention options)

City of Zurich Department of Civil Engineering

Intervention plan (PMS)

Management of subsystem Planning

Construction/extensions

Planning of measures of

Planning of measures of civil engineering struct.

Maintenance planning for

Maintenance planning for

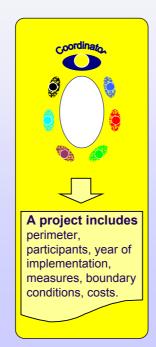
Maintenance planning for

Maintenance planning for

sewage

Maintenance planning

roads


tramway

water supply

power supply

Planning and construction process

Total reconstruction
(joint projects)

Planning Design Implementation

- → Reduction of total costs for the city
- → Reduction of obstruction of traffic
- → Reduction of nuisance for residents

Non-joint projects

Planning Implementation

14.9.2005

PM-oriented Asset valuation for the New Public Management

City of Zurich
Department of Civil Engineering

Coordination: as good as necessary, instead of as good as possible

23

Costs of measures taken

Maintenance

 Which measures are effective within the Basic model for Maintenance?

Costs

- How do we share the costs of joint projects?
- At what time do we evaluate costs (annual reporting or at the completion of the project)?
- How do we define costs? (tender or actual costs)

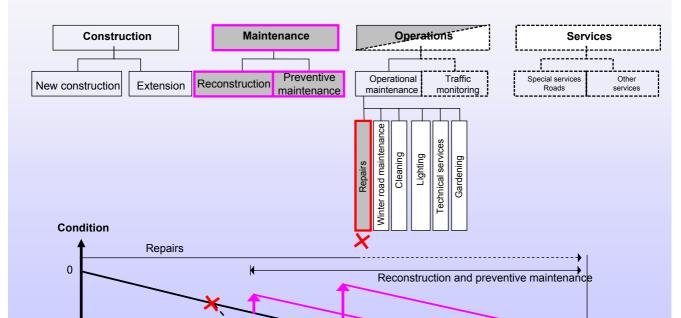
Performance

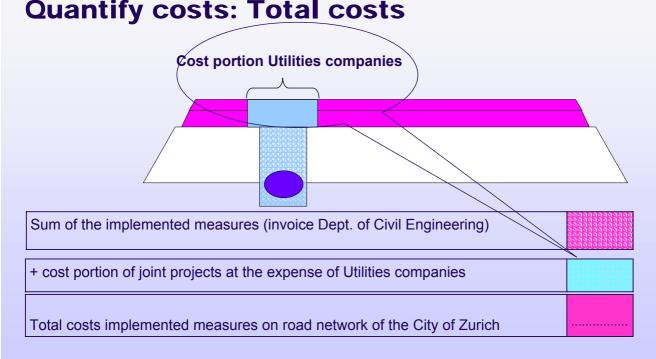
- What is the performance?
- · How to we quantify it?

Effects

- · What is the impact of the measures?
- How do we measure the impact?
- How does it relate to the New Public Management (NPM)?

14.9.2005


PM-oriented Asset valuation for the New Public Management


25

City of Zurich Department of Civil Engineering

Evaluation of implemented measures

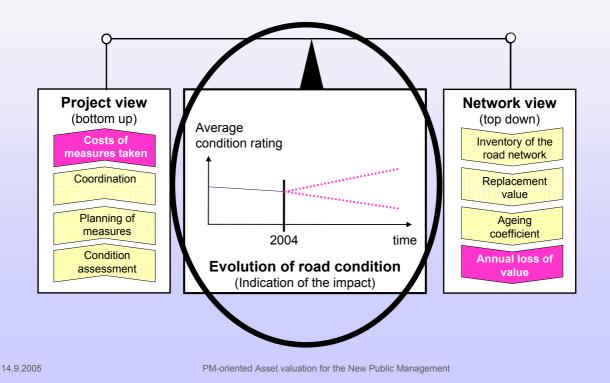
Costs and performance (m2) are quantified once at completion of project

14.9.2005

PM-oriented Asset valuation for the New Public Management

27

City of Zurich Department of Civil Engineering

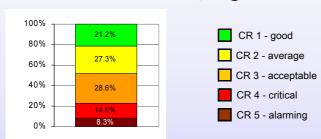


Quantify costs and performance Project view

Budget / Finance plan	2003	2004	2005	2006	Σ
Project A	10,000	40,000	30,000	20,000 🔷	100,000
1 Toject A	10,000	+0,000	30,000	20,000	100,000
Accounting view	10,000	40,000	30,000	20,000	
Project view (at completion)				v	
Total costs	1			····>100,000	EURO
Total performance				330	m ²

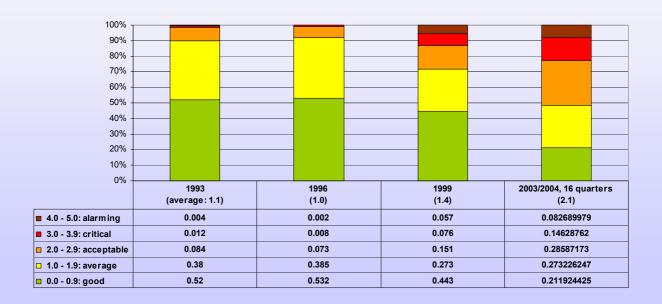
In the project view the costs and perference on a supplified at the completion of

Evolution of road condition

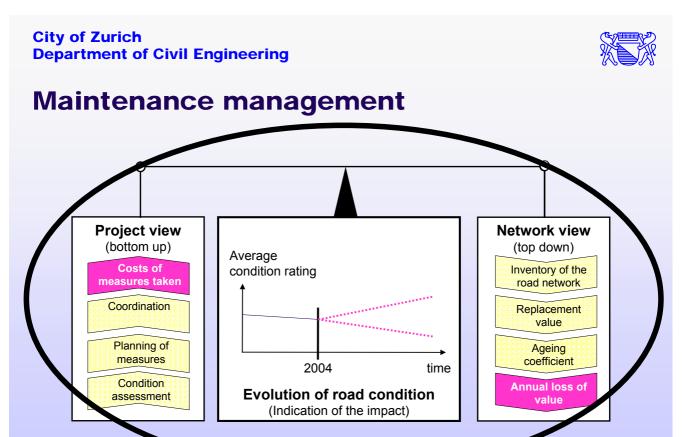

City of Zurich
Department of Civil Engineering

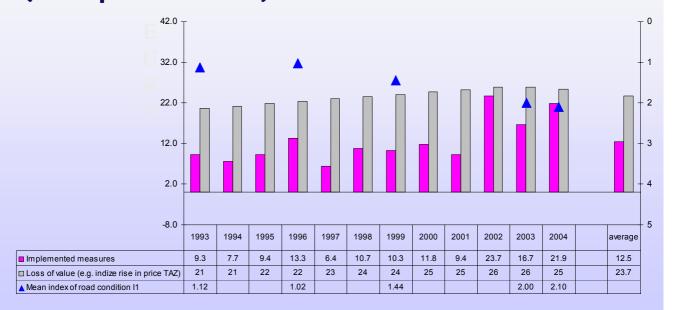
29

Current condition ratings (2004)


Roads mean value: 2.07 (weighted according to traffic lane area)

Civil Engineering structures mean value: 2.39 (weighted according to bridge area)


Condition ratings from 1993 to 2004 (Example roads)


14.9.2005

PM-oriented Asset valuation for the New Public Management

31

Look back: Balance? (Example roads in €)

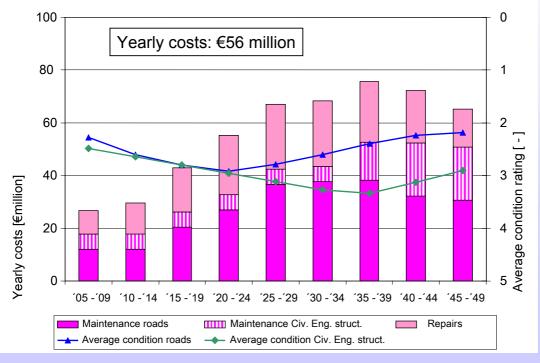
without Repairs

14.9.2005

PM-oriented Asset valuation for the New Public Management

33

City of Zurich Department of Civil Engineering



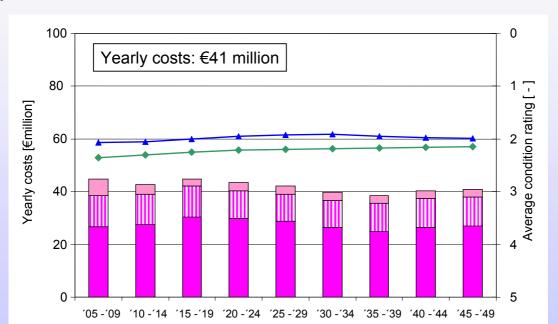
Look forward: Maintenance scenarios

To demonstrate the evolution of the financial needs and the road network condition of the City of Zurich for the coming 45 years:

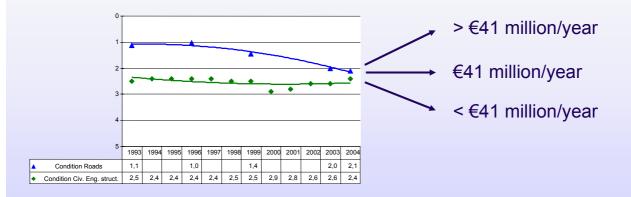
- 1. with limited financial means over the next 10 years (Scenario "Threshold on maintenance expenses")
- 2. with a sustainable maintenance strategy (Scenario "Sustainable maintenance")
- 3. with a 25%-reduction of the financial means over the next 10 years (Scenario "Decrease of the maintenance expenses")

"Threshold on maintenance expenses ": Results

14.9.2005


PM-oriented Asset valuation for the New Public Management

35


City of Zurich Department of Civil Engineering

"Sustainable maintenance": Results

Basis for political decision-making

Sustainable maintenance of the Zurich road network means:

Gradual increase of the maintenance expenses from today €26 million/year to €41 million/year.

14.9.2005

PM-oriented Asset valuation for the New Public Management

37

City of Zurich Department of Civil Engineering

Management oriented road maintenance is

Lack of cost transparency lead the (short-period oriented) politics into temptation to burden maintenance investments onto the next generation

- New combination of technology, organisation, public administration accounting, new public management and data management for the management of maintenance from the network point of view
- Easy, plausible, transparent, economical due to few key data and industrial standards
- Political options for a sustainable road maintenance with positive cost

Guide for the implementation

www.chgemeinden.ch

14.9.2005

PM-oriented Asset valuation for the New Public Management

39