
Yellowstone National Park

Cold Regions Engineering

WORLD HERITAGE SITE

June 2002

Yellowstone National Park Road Program

- 20-year program to upgrade roads
- \$12 million per year budget
- Both reconstruction and 3R
- Original road system built in 1930's
- 230 km long Grand Loop Road
- 175 km of additional primary highways

Climate on the Park's West Side

- Roads are between 1600 m and 2700 m elevation
- 560 mm average annual precipitation
- 3630 mm average annual snow accumulation
- July average maximum temperature is 26°C
- January average minimum temperature is -18°C
- Mean annual air temperature is 1.6 °C
- Average 268 days/year with lows below freezing
- Air thawing index is 3423 degree-days
- Air freezing index is 5478 degree-days

Soils and Pavement Design

- Primarily colluvial and glacio-fluvial soils derived from tuff and rhyolite
- Generally granular—silty sand and gravel, SP, SM, GP, and GM
- Don't provide Corps of Engineers' frost design throughout the project
- Instead, subexcavate frost-susceptible soils in known frost heave areas

Road Management

- Roads are plowed and open to the public from April through October
- Park manages overweight vehicles during spring thaw period
- Roads are groomed for snowmobiles from November through March
- Snow over the center of the roadway is compacted and has poor insulation properties compared to snow over the road shoulders

North Rim Drive

 Two photos of typical spring frost heave conditions

Picture3 Picture4

Northeast Entrance Road

Two photos of road condition prior to 3R project

Picture5 Picture6

Typical Subexcavation Treatments in Frost Heave Areas

- Experience over several projects indicates depth has to be at least one meter to prevent future pavement cracking
- Use separation geotextile on the floor of the subexcavation
- Select borrow is free draining with less than 5% passing the 75-micron sieve
- Provide underdrains in wet areas

Type 1 Subexcavation

- Used in areas with high water table
- *In situ* soils are wasted because they are too moist to be workable
- Creates relatively large quantities of waste and requires large quantities of select borrow

Type 2 Subexcavation

- "Sandwich" treatment used in moderately wet areas
- *In situ* soils are reused if they are at a workable moisture content
- Advantages: lower cost because quantities of waste material and select borrow material are reduced

Type 3 Subexcavation

 Used over cross culverts where frost heave is a problem

Type 4 Subexcavation

- Experimental treatment used in moderately wet areas
- Geocomposite sheet drain replaces geotextile and select borrow
- *In situ* soils are reused if they are at a workable moisture content
- Advantages: lower cost because quantity of waste material is reduced and no need for select borrow material
- Four years of use shows it to be as effective in preventing frost heave as Type 1 and 2 treatments

Construction of Type 2 Subexcavation

- Photo shows top layer of geotextile placed over select borrow layer
- Contractor used half-width construction so traffic could pass

Nez Perce Ford Frost Heave Area

- Historically one of most severe heave areas in the Park—up to 350 mm of differential heave
- 160 meters long
- High water table
- Profile: 0.7 m of sand (SP-SM) over lacustrine silt (ML)
- Sand layer contains prehistoric artifacts (obsidian arrowheads and shards)

Picture12 Picture13

Nez Perce Ford Proposed Design

- Minimize impact to artifact-bearing sand layer from subexcavation and drains
- Profile allows only a small grade raise
- Use 75 mm of polystyrene insulation board to reduce frost penetration

Gibbon Meadows Reconstruction

- Another historically severe heave area with a lot of differential heave
- 1340 meters long
- Meadow has interbedded layers of fine sand (SP-SM) and diatomaceous earth (ML)
- Existing road fill (600 to 800 mm of sand, SP-SM) was constructed over several time periods
- Some borings encountered corduroy (logs) and other borings encountered rocky embankment layers
- Four roadway cross sections follow two photographs:

Picture15 Picture16 Picture17 Picture18

Gibbon Meadows Design

- Widened roadway all on one side
- Subexcavated a portion of the native soils to limit differential settlement under the new embankment
- Backfilled subexcavated area with existing embankment material to maintain uniformity of embankment material
- Placed a uniaxial geogrid (10 kN/m allowable wide width strength) transversely across the roadway to limit crack propagation up through the embankment
- Raised overall grade by 300 mm to reduce frost penetration into frost-susceptible layers

Gibbon Meadows Performance

- Roadbed was constructed up to subgrade last fall
- 300-mm-thick pavement structure is yet to be placed
- Last winter was a moderate year for frost heaves
- No visible distortion of the roadbed surface this spring
- A few isolated hairline cracks appeared to be visible in the roadbed surface this spring

Warm Ground Design

- Primary purpose is to prevent snow from melting from the roadway in warm areas so that snowmobiles can run on the snow (Insulation board)
- Avoids expense of maintenance crews placing wood chips on the roadway each fall and removing them in the spring
- Secondary purpose is to prevent hydrothermal gases from deteriorating the asphalt concrete pavement (geomembrane)
- To minimize impact on hydrothermal features and caverns, no vibratory compaction is allowed during construction in these areas

Picture20 Picture21

Craig S. Dewey, PE Geotechnical Engineer Western Federal Lands Highway Division 610 East Fifth Street Vancouver, Washington, USA 360 619-7702 dewey@wfl.fha.dot.gov

Acknowledgements

- Jeri Sooter and Brad Wilder for scanning photos and drawings
- Rich Barrows, PE, for coordination and presentation review
- WFLHD road design and construction staff