International Seminar on Recycling Warsaw, 10 - 11 October 2002

GUIDELINE ON IN SITU RECYCLING WITH CEMENT

Carlos Jofré
IECA, Spain

GUIDELINE ON IN SITU RECYCLING WITH CEMENT

Working group

Australia France Spain

Austria Germany United Kingdom Belgium Greece

Contributions

Canada South Africa Czech Republic Switzerland Japan USA

GUIDELINE ON IN SITU RECYCLING WITH CEMENT

- Introduction
- Preliminary studies
- Properties of cement bound recycled materials
- Mix design
- Thickness design
- Machinery for recycling
- Execution of the work
- Quality control
- Cost analysis

INTRODUCTION

- Common part on pavement recycling
 - Definition
 - Historical development
 - Objectives
 - Types
 - Advantages and limitations of in situ recycling

• Particular features of in situ recycling with cement

CEMENT RECYCLING

- Purpose:

Transforming a degraded and heterogeneous pavement into

a consistent and more homogeneous structure, adequate to actual traffic,

by milling, mixing with a hydraulic binder and compaction

PARTICULAR FEATURES OF IN SITU RECYCLING WITH CEMENT

- Deep treatment (20 35 cm):
 - substantial increase of bearing capacity
 - great decrease of
 - pavement deflections
 - subgrade strains and stresses
 - correction of deformed pavements (ruts)
- Shrinkage cracking → joints (precracking)

HISTORICAL DEVELOPMENT

- Antecedent → retread process (U. K.)
- Development since middle of 80s:
 - better knowledge of cement treated materials
 - more powerful and reliable equipment
 - increasing ecological concern

IN SITU RECYCLING WITH CEMENT

The Spanish experience

- First work: 1991 (non - Spanish contractor)
- First recycling equipment: 1996
- Currently: 22 recyclers

PRELIMINARY STUDIES

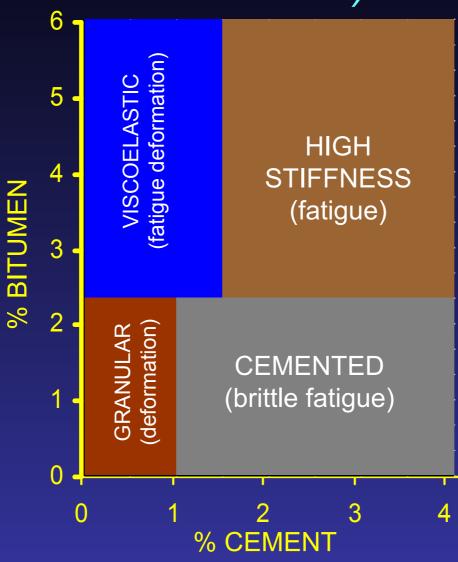
- Examination of the existing road
- Core sampling
- Characterization of the materials (grading, plasticity, moisture content, setting inhibitors)
- Drainage and climate
- Traffic
- Widening works

MECHANICAL PROPERTIES OF CEMENT RECYCLED MATERIALS

- Compressive strength
- Modulus of elasticity

CEMENT RECYCLED MATERIALS Strength

• Factors:

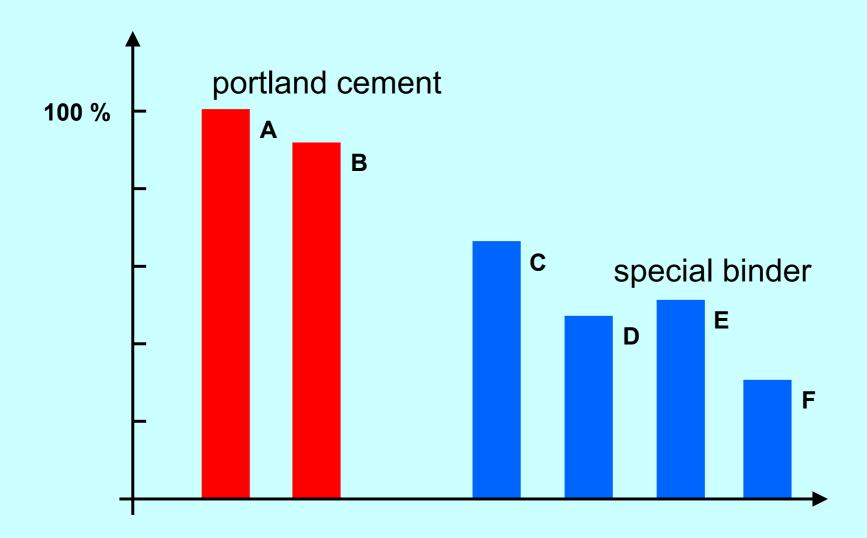

- cement content
- existing materials (quality of aggregates, clay, % bituminous mix)
- effectiveness of milling and mixing processes
- moisture
- dry density after compaction
- age

Influence of content of milled bituminous mix on compressive strength

COMBINED RECYCLING (CEMENT - EMULSION)

MIX DESIGN

- Similar to other cement treated materials
 - water content by misture density tests
 - cement content by compressive strength
- Difficulties
 - grading after milling
 - properties dependent on recycled thickness
- Types of cement
- Workability time



CEMENTS

- Desirable characteristics:
 - high active addition content
 - low medium strength
 - slow strength development at early ages
- Preferred cements:
 - CEM IV, CEM II (EN 197-1 Standard)
 - hydraulic road binders (EN 13282 Standard)

PAH polycyclic hydro–carbons in leachate tar–bearing material stabilized with 5 %

CEMENT - RECYCLED MATERIALS Cement content

- The minimum to obtain the required strength (2.5 MPa at 7 days; 4 - 6%)
- Use "aggregates" with expected grading after milling (+ grading corrector, if needed)

THICKNESS DESIGN

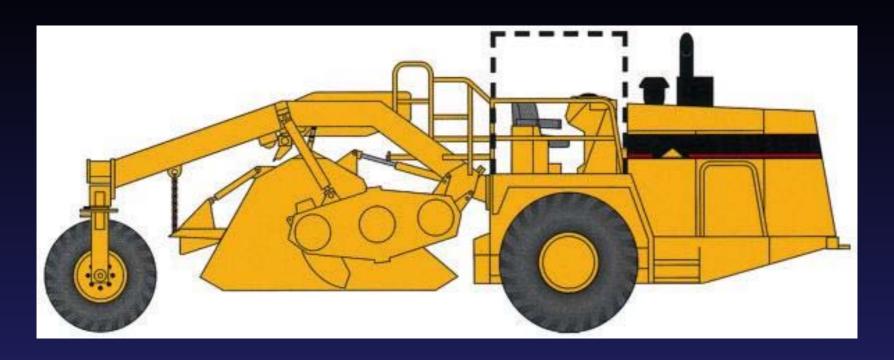
- Information to use existing methods
 - multilayer models (E, v)
 - Structural coeeficients (AASHTO)
- Catalogues of pavement sections (Spain)
 Design curves (UK)

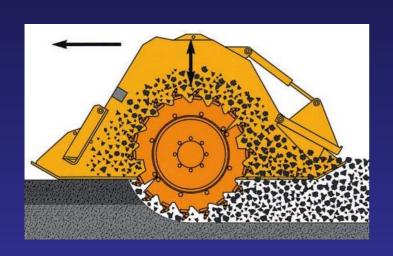
MACHINERY FOR RECYCLING

- First phase: specific machines
 - cement distributors (powder, slurry)
 - recyclers (milling and/or mixing machines)
- Second phase: similar to other cement-treated layers
 - [equipment for precracking]
 - rollers
 - graders
 - emulsion tankers

CEMENT SPREADERS

- Spreaders for powdered cement (self-propelled, towed, coupled)
- Slurry feeders
 (cement hopper + water tank +
 slurry mixers + pump)
- New developments
 (direct injection of powdered cement ...)

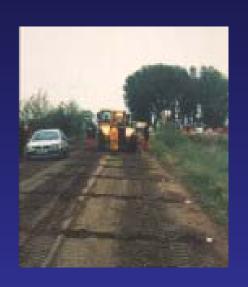




RECYCLERS

- Stabilizers / recyclers
- Modified machines for pavement milling
- Double drum machines
 (milling drum + mixing drum)
- Mixing machines of previously milled material
- Recycling machines with milling drum, crusher and mixing drum

Guideline on In Situ Pavement Recycling With Cement



Guideline on In Situ Pavement Recycling With Cement

FRESH - MADE JOINTS Equipment

- Notches < 1/3 recycled depth (hand – guided or self - propelled)
 - vibrating plate with welded blade
 - vibrating roller with cutting flange or cutting disk
- Notches taking in most of recycled depth (self- propelled)
 - emulsion (CRAFT)
 - flexible plastic ribbon (Olivia)
 - rigid plastic profile (Active Joint)

EXECUTION OF THE WORKS

- Application of [imported aggregate and] binder
- Addition of water
- Milling and mixing
- [Precracking]
- Compaction
- Trimming
- Curing and protection seal
- Asphalt surfacing

COMPACTION

- Compact as soon as possible
 - avoid moisture losses (and increases)
 - not after end of workability period (bonding between recycling strips)
- Future pavement performance heavily dependent on adequate compaction (100 97 % Modified Proctor)
- Use suitable equipment (test section)

TRIMMING

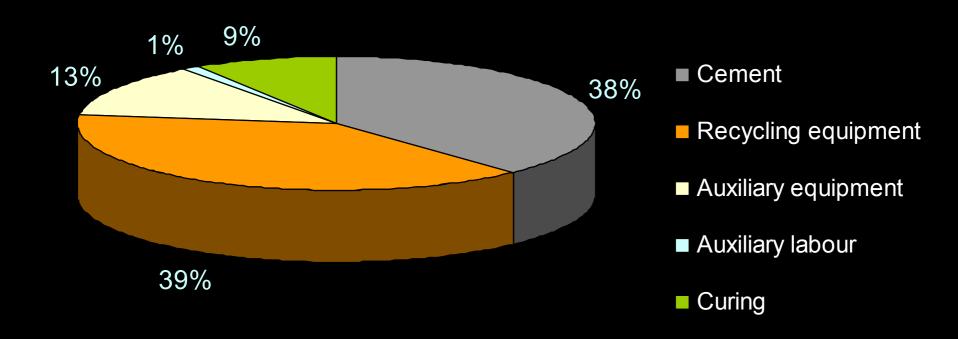
- To eliminate surplus material To correct surface evenness
- Only remove
 Do not fill depressions with loose material
- Take into account trimming
 - -to estimate recycling depth(1 - 2 cm more)
 - -for workability period

CURING AND OPENING TO TRAFFIC

- Usually bituminous emulsion
- Spread chippings if traffic is allowed on top of recycled layer
- Opening to traffic after emulsion breakdown (some hours)
- Take measures (speed limitations) to avoid distresses
- Bituminous layers

QUALITY CONTROL

- Controls during construction
- Controls after construction



FACTORS INFLUENCING COSTS

- Size of the work:
 - thickness
 - total area(mobilisation of equipment)
 - shape (regular, irregular)
- Characteristics of existing pavement
- Recycling equipment
- Cement content (cost, output)

COST SPLITTING

5 to 15% less expensive than overlay or reconstruction

CEMENT RECYCLING vs OVERLAY Factors to be considered

- Total costs of construction
- Expected results from recycled material (strength ...)
- Final quality of new pavement (adequacy to present and future traffic)
- Availability of local materials
- Bridge clearance, side accesses ...

SUMMARY

- Cement recycled pavements:
 - less homogeneous than new ones
 - much homogeneou than existing ones needing to be rehabilitated
- Economical and reliable option
- Extensive experience in many countries

SUMMARY

- Satisfactory results if
 - recycled thickness 20 35 cm
 - distresses: from pavement not from subgrade
 - target compressive strength > 2.5 MPa
- Cement recycled materials similar to soilcement or cement treated bases (used for all traffic classes)

SUMMARY

- All types of cement can be used
- Existing bituminous materials can be recycled with cement (< 1/3 of total treated thickness)
- Precracking (joints) always advisable When really necessary?
- Specifications and/or design methods available in several countries

CONCLUSION

In situ recycling with cement should always be considered for the rehabilitation of fatigued pavements