Can People Respond to Complex Pricing Signals?

Peter Bonsall and Jeremy Shires
Presentation to PIARC Seminar on Road Pricing Cancun, Mexico April 2005
Structure of Presentation

• Background
• Evidence
• Conclusions and Implications
First Best solution (1)

- Price should vary dynamically according to costs imposed by user
- Implies variation by
 - time of day
 - level of traffic
 - type and condition of vehicle
 - weather conditions
 - location (capacity available, riparian use, topography …)
First Best solution (2)

• But First Best solution requires users to know the price in time to make a considered response to it!
• Requires some simplification
 – reduce variation by vehicle type?
 – reduce link with weather conditions?
 – reduce local variation?
 – reduce degree of dynamic variation?
Existence of a Trade-off

- There is a trade-off between
 - complexity of the pricing signal
 - likelihood of it being predicted by users in time
- Need to understand what users can cope with
- Need for modelling to find optimal trade-off
- UK DfT interest (NRPSF)
- EU funded research on “fair and efficient pricing”
UK DfT study

• One of several contributing to NRPFS
• Seeking evidence on people’s abilities to deal with complex prices
 – from academic literature
 – from commercial and ‘grey’ reports
 – from luminaries
Research in Decision Making (1)

• There is a limit to people’s ability
 – about 7 items of information?
 – varies with personal characteristics
 • experience, intellectual ability, education …
 – also depends on context
 • presentation of information

• Even when they have the ability some people choose not to act analytically
 – varies with personality type
 – depends on context
 • “obviousness” of solution
 • whether the situation involves a gain or a loss
 • the amount of any gain or loss
 • whether the decision is ‘routine’
Research in Decision Making (2)

- When people cannot analyse, or choose not to, they use heuristics
- Heuristics often involve simple rules of thumb
 - require much less intellectual effort
 - require less data/information
- Accuracy of heuristics
 - varies
 - low if heuristic is weak or inappropriately applied
 - high if situation is amenable
 - can increase with feedback
Existing Applications of Road Pricing (1)

Singapore
 – ERP
 – price varies by time of day and is periodically revised
 – some initial concern but complexity no longer an issue
 – responses suggest widespread understanding

Switzerland/Austria/Germany
 – distance-based charges for trucks
 – some initial concern but complexity not an issue
 – no evidence of failure to understand
Existing Applications of Road Pricing (2)

I-15 San Diego HOT Lane
- dynamically adjusted toll reflects congestion
- current toll posted upstream of decision point
- initial concern about complexity has evaporated
- commercial firms more concerned than private motorists?
- price signal being interpreted as an indicator of current congestion?

SR91 Orange County HOT Lane
- pre-published schedule of charges
- now 11 per day
- complexity not an issue
Other Transport Evidence (1)

French motorways
 - Cofiroute 1996
 - introduction of peak period tolls near Paris
 - public objection (unfair, ineffective, complicated)
 - withdrawn

French Railways
 - SNCF’s yield management pricing
 - price dependent on capacity, pre-booking required
 - public objection (unfair, complication, inconvenient, inefficient)
 - withdrawn

Germany Railways
 - Deutsche Bahn 2003
 - capacity-related discounts and advance booking incentives
 - public objection (unfair, complicated, inconvenient)
 - withdrawn
Other Transport Evidence (2)

UK Train Fares
- great variety of tickets, prices and restrictions
- SRA consultation (in 2003) concluded that this was a major problem
- evidence of loss of patronage
- Virgin Trains’ simplification has been welcomed
- acceptance of need for peak period premium

“No frills” airline ticket pricing
- prices vary dynamically in response to demand
- most customers use internet or phone to find price immediately before purchase
- rational for variation seems to be accepted
- public object to “hidden” charges but no longer demand equity

Bus Fares
- acceptance of rationale for peak period premium
Other Contexts

Taxi fares
- metered fares depend on distance, duration and time of day
- people seem able to cope with this
- but are their estimates accurate?
- and are choices rational?

Phone charges, internet charges etc.
- niche marketing creates a range of tariffs
- but marketplace recognises preference for simplicity
- hence suppliers offer simple pre-payment options and simple pay-as-you-go options
- general retreat from capacity-related tariffs
- the question of equity or fairness rarely arises
Preferences and Attitudes

- General aversion to complexity affects choice between options
- Acceptance of price variation in private sector
- Acceptance of price variation in public sector provided that it is fair and efficient
- Acceptance of need for peak premium when demand is high
Prediction of Prices

• The ability to analyse/predict prices varies between individuals and contexts
• …as does the willingness to conduct full analysis
• Many decisions will be based on heuristics
 – particularly as people gain familiarity
• The accuracy of heuristics will depend on various factors, including
 – the obviousness of the price structure
 – the availability of cues
 – the availability of feedback
Implications for Design and Performance of Road Pricing Systems

- Unwarranted complexity would be a target for criticism
- The rationale for complexity should be obvious
- Complexity would discourage usage (but not efficiently)
- After the initial phase most people will use heuristics to estimate prices
- The price structure should be obvious and well cued
- Feedback on prices should be given
- Planning aids should be encouraged
Can people respond to complex price signals?

Yes,..... but only if they are not very complex!

......and.........