Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS

André de Palma, Ecole Nationale des Ponts et Chaussées Moez Kilani, Univ. du Centre de Sousse, & Robin Lindsey, Univ. of Alberta

International Seminar on Road Pricing

Cancún, April 11-13, 2005

Acknowledgments

European Commission (Project MC-ICAM)

Social Sciences and Humanities Research Council of Canada

PTV & ADPC

Fabrice Marchal

Faisal Khan

Outline of presentation

- 1. Introduction and motivation
- 2. Structure of METROPOLIS
- 3. Laboratory network
- 4. Results
- 5. Conclusions

1. Introduction and motivation

Introduction and Motivation...

Topology of tolling schemes

Link tolls Bridges, tunnels, Highways

Cordon tolls Norwegian cities

Area schemes Singapore, London

Comprehensive:

- Kilometre-based charges for Heavy Goods Vehicles (Switzerland, Germany, Austria, New Zealand)
- Nationwide car tolls envisaged for UK in 10+ years

Introduction and Motivation...

Time structure of tolls

- FlatMajority of toll roadsSingle stepSingapore 1975-98, London,
French motorways
- Multi-step Singapore 2005, SR 91 (California)
- Dynamic Interstate 15 (California)

Introduction and Motivation

Basic modeling requirements

- **Detailed road network representation** (tolls induce re-routing)
- **Endogenous trip-timing decisions** (tolls induce retiming of trips)
- Elastic automobile travel demand
 - (tolls induce modal switching)
- **Consistent welfare analysis**

2. The METROPOLIS simulator

Systematic cost for auto trip

3. Laboratory network

"Public transport" network

Travel time = Shortest path distance by road @ 40 km/h

Trip demand

- Morning commuting trips
- Static O-D matrix
- Mean 8,000 trips per zone \Rightarrow 264,000 trips
- O-D demand exponential function of (free-flow) travel time. Trips per O-D pair: 123-660

Demand parameters						
Mode choice						
Logit scale parameter \$5						
Auto						
Logit departure time choice	\$2					
Desired arrival time	8:00 (st. dev. 0:20)					
On-time window (full)	10 mins					
Early cost	\$6/hr					
Late cost	\$25/hr					
Travel time cost	\$10/hr					
Public transport						
Travel time cost	\$15/hr					
Fixed penalty \$10						

4. Results

No-toll equilibrium

Auto share	70.6%
Distance	15.0 km
Travel time	22.1 mins
Speed	40.7 km/h
Congestion index	38.5%

Congestion indexes: Ring roads

Tolling regimes considered

Comprehensive

Five-minute step tolls (approx. system optimum)

Flat tolls

Cordon toll on Ring 2

Flat

Half-hour time steps

Area within Ring 2

Flat

Half-hour time steps

Comprehensive 5-minute step tolls

Externalities: Road link congestion only.Public transport: Neither economies nor diseconomies.

⇒ Time-dependent anonymous link tolls suffice to support system optimum.
But computationally demanding.
Heuristic solution via "no-queue" tolling.
Non-zero tolls on all links except those without queuing {In4, Out4, Ring4}

Impact of comprehensive tolls on departure times

Welfare impacts of comprehensive tolls

Pagima	No-toll	Comprehensive			
Regime:		Five-minute step	Flat		
			In : \$0.73, \$2.15,		
		5 min. step tolls	\$2.00, \$0.00		
Optimal toll level(s)		on all links except	Out : \$1.37, \$1.06,		
		In4, Out4, Ring 4	\$0.76, \$0.00		
			Ring : \$0.42, \$0.51,		
			\$0.27, \$0.00		
AutoShare	71%	69%	64%		
Congestion	38.5%	4.8%	11.0%		
VehKm [10 ³]	279.6	280.0	255.4		
Travel cost	\$5.16	\$5.56	\$6.33		
Welfare gain/capita		\$204.84	\$94.14		
Toll revenue/capita		\$215.08	\$333.81		
Welfare gain/revenue		0.952	0.282		
Relative welfare gain		100%	46%		
Gainers no rebate		29%	11%		
Gainers100% rebate		83%	67%		
Rebate: 50% gain		33%	78%		
St. dev. of CS change		1.123	1.191		

23

Distributional impacts of comprehensive tolls

Destin.	Origin											
Destin.	Ring 0		Ring 1		Ring 2		Ring 3		Ring 4		All origins	
Ring 0	(a)	(C)	25%	99%	26%	0%	20%	0%	17%	0%	22%	28%
Tang U	(b)	(d)	\$0.20	\$0.43	\$0.07	-\$0.63	-\$0.22	-\$1.54	-\$0.32	-\$1.45	-\$0.05	- \$0.74
Ring 1	39%	78%	29%	83%	33%	0%	30%	0%	31%	0%	31%	22%
Tang T	\$0.33	\$0.06	\$0.04	\$0.24	\$0.02	-\$0.94	-\$0.23	-\$1.87	-\$0.25	-\$1.77	-\$0.09	- <mark>\$1.05</mark>
Ding 2	44%	0%	31%	1%	30%	3%	28%	0%	28%	0%	30%	1%
Ring 2	\$0.17	-\$0.93	-\$0.12	-\$0.79	\$0.04	-\$0.42	-\$0.19	-\$1.41	-\$0.20	-\$1.34	-\$0.12	-\$1.01
Ring 3	45%	0%	28%	0%	28%	1%	38%	0%	30%	29%	31%	8%
Ring 3	\$0.49	<mark>-\$1.59</mark>	\$0.02	-\$1.41	-\$0.10	-\$0.94	\$0.23	-\$0.31	\$0.03	-\$0.19	\$0.05	-\$0.74
Ding 4	50%	0%	27%	0%	23%	0%	28%	0%	32%	31%	28%	6%
Ring 4	\$0.66	-\$1.98	-\$0.05	-\$1.80	-\$0.05	-\$1.38	-\$0.02	-\$0.69	-\$0.01	-\$0.17	-\$0.01	-\$1.05
All	44%	27%	29%	29%	29%	1%	30%	0%	29%	12%	30%	11%
destins.	\$0.37	-\$0.90	-\$0.02	-\$0.74	-\$0.01	-\$0.89	-\$0.09	-\$1.21	-\$0.13	-\$1.00	-\$0.05	-\$0.96

(a) % travelers gaining from step toll

(b) Mean change in consumer's surplus/trip from step tolls

(c) % travelers gaining from flat toll

(d) Mean change in consumer's surplus/trip from flat tolls

Welfare impacts of cordon tolls

Pagima	No-toll	Compr	ehensive	Cordon			
Regime:		Five-minute step Flat		Flat	Half-hour step		
			In : \$0.73, \$2.15,		<6:30: \$0.00		
		5 min. step tolls	\$2.00, \$0.00		6:30-7:00: \$0.90		
Optimal toll level(s)		on all links except	Out : \$1.37, \$1.06,	\$4.97	7:00-7:30: \$5.78		
		In4, Out4, Ring 4	\$0.76, \$0.00	ψ τ .97	7:30-8:00: \$4.39		
			Ring : \$0.42, \$0.51,		8:00-8:30: \$2.29		
			\$0.27, \$0.00		>8:30: \$0.00		
AutoShare	71%	69%	64%	66%	69%		
Congestion	38.5%	4.8%	11.0%	21.2%	16.1%		
VehKm [10 ³]	279.6	280.0	255.4	264.5	276.4		
Travel cost	\$5.16	\$5.56	\$6.33	\$5.65	\$5.35		
Welfare gain/capita		\$204.84	\$94.14	\$47.22	\$89.80		
Toll revenue/capita		\$215.08	\$333.81	\$168.01	\$121.10		
Welfare gain/revenue		0.952	0.282	0.281	0.742		
Relative welfare gain		100%	46%	23%	44%		
Gainers no rebate		29%	11%	37%	41%		
Gainers100% rebate		83%	67%	71%	75%		
Rebate: 50% gain		33%	78%	16%	10%		
St. dev. of CS change		1.123	1.191	1.127	0.76		

Welfare impacts of area tolls

Regime:	No-toll	Compr	ehensive	Cor	don	Area		
regime.		Five-minute step	Flat	Flat	Half-hour step	Flat	Half-hour step	
			In : \$0.73, \$2.15,		<6:30: \$0.00		<6:30: \$0.00	
		5 min. step tolls	\$2.00, \$0.00		6:30-7:00: \$0.90		6:30-7:00: \$0.93	
Optimal toll level(s)		on all links except	Out : \$1.37, \$1.06,	\$4.97	7:00-7:30: \$5.78	\$4.30	7:00-7:30: \$4.41	
		In4, Out4, Ring 4	\$0.76, \$0.00		7:30-8:00: \$4.39		7:30-8:00: \$3.24	
			Ring: \$0.42, \$0.51,		8:00-8:30: \$2.29		8:00-8:30: \$1.71	
			\$0.27, \$0.00		>8:30: \$0.00		>8:30: \$0.00	
AutoShare	71%	69%	64%	66%	69%	63%	67%	
Congestion	38.5%	4.8%	11.0%	21.2%	16.1%	16.2%	14.9%	
VehKm [10 ³]	279.6	280.0	255.4	264.5	276.4	253.4	266.9	
Travel cost	\$5.16	\$5.56	\$6.33	\$5.65	\$5.35	\$6.59	\$6.04	
Welfare gain/capita		\$204.84	\$94.14	\$47.22	\$89.80	\$72.13	\$125.36	
Toll revenue/capita		\$215.08	\$333.81	\$168.01	\$121.10	\$337.88	\$229.10	
Welfare gain/revenue		0.952	0.282	0.281	0.742	0.213	0.547	
Relative welfare gain		100%	46%	23%	44%	35%	61%	
Gainers no rebate		29%	11%	37%	41%	13%	21%	
Gainers100% rebate		83%	67%	71%	75%	56%	67%	
Rebate: 50% gain		33%	78%	16%	10%	81%	32%	
St. dev. of CS change		1.123	1.191	1.127	0.76	1.01	0.891	

5. Conclusions

Conclusions...

Main findings

Superiority of step tolls vs. flat tolls:

- Higher welfare gains ($\cong 2x$)
- Lower revenues (transfers)

 \Rightarrow More favorable to travelers

Conclusions...

Extensions

- 1. Link tolling
- Real networks → Paris, Zurich, Brussels, Seoul, Tokyo, ...
- 3. Heterogeneous VOT and schedule delay costs
- 4. Evening travel
- 5. Toll discounts to enhance acceptability
- 6. Use of revenue (acceptability, self-financing, etc.)

Molino model in « REVENUE » (ε charge, competition, revenues, risk & PPT) for a dynamic Engineering/Accounting CBA

depalma@adpc.be and Stef Proost

