

ROAD INVESTMENT FOR SUSTAINABILITY OF NETWORK AND DOMESTIC CONTRACTORS

By Adam Andreski

Contact details

adam.andreski@ittransport.co.uk

Direct:: +44 (1235) 437805 Office: +44 (1235) 833753 Fax:: +44 (1235) 832186 I. T. Transport Ltd The Old Power Station, Ardington, Wantage, Oxon, OX12 8QJ, United Kingdom.

www.ittransport.co.uk

Introduction

- Many countries have recently created Roads Funds and Roads Agencies to improve road management.
- Often investment strategies have not been optimal for the sustainability of the network and development of domestic contractors.
- Consideration is given to current investment strategies in Suriname, Tanzania and Zambia

Key Message

Giving priority to road maintenance at local level will enhance development of both national total road asset and the local construction industry

Paper in 2 parts:

• Strategic model for road investment

• Ways of developing local contractors

Investment Tool

Key Data Input

- Road Asset Value
- Backlog Value
- Deferred maintenance cost factor
- Maintenance requirement as a % of asset value
- Annual increase in budget

1. Suriname Example

Get Vehicle Data From RUC & VOC Model

	Kilometers		Vehicle				
	Number of	Driven	Utilization				
Vehicle Type and	Vehicles	per year	Veh-km/yr		VOC		
Payload (tons)	(veh)	(km/yr)	(million)	Good	Poor	Good	Poor
				IRI=2m/km	IRI=10m/km	\$m	\$m
Car	65,000	20,000	1,300	0.170	0.235	221	305
Light Truck (2.0)	2,000	40,000	80	0.156	0.208	12	17
Medium Truck (5.0)	20,500	40,000	820	0.455	0.611	373	501
Articulated Truck (25.0	2,500	40,000	100	0.799	1.122	80	112
Bus	2,500	40,000	100	0.176	0.235	18	24
Total	92,500		2,400		Total	704	958

Normal traffic benefit Generated traffic benefit Total

254
46
300

Do nothing option

Deferred maintenance cost factor	2.5
Maintenance cost as % of asset	3.0
% annual Increase in budget	1.0

VOC Saving for primary Network from Poor to Good Ann. Traffic Growth %

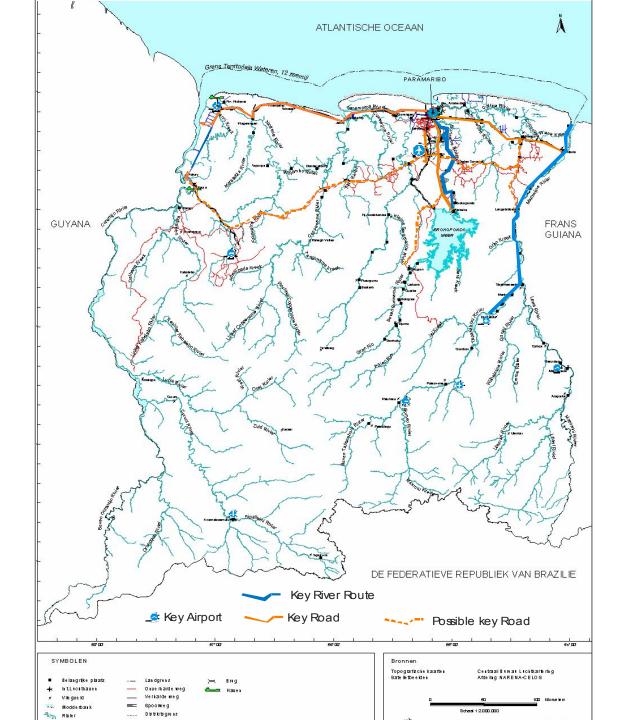
299.8	}
2)

Strategy 0 - Do Nothing

Year	0	1	2	3	4	5	6	7	8	9	10	Totals
Asset Value	312	293	273	251	227	202	175	147	117	85	51	
Maintenance backlog	63	77	92	107	122	138	155	172	189	206	225	
Maintenance requirement	9	9	8	8	7	6	5	4	4	3	2	64
Annual cost of backlog	5	6	7	8	9	10	12	13	14	15	17	116
Capital expenditure	-]	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	-	-
Rehabilitation expenditure	-	-	<u> </u>		<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	-	-
Maintenance expenditure	-		<u> </u>		<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	_	_
VOC Benefit		(15)	(17)	(19)	(22)	(26)	(32)	(40)	(52)	(74)	(128)	(425)
Total Net Benefit		(34)	(37)	(41)	(46)	(51)	(58)	(68)	(82)	(106)	(162)	(685)

Current Strategy

Strategy 1 - Current - Opcenten SRD 0.03 only on petrol

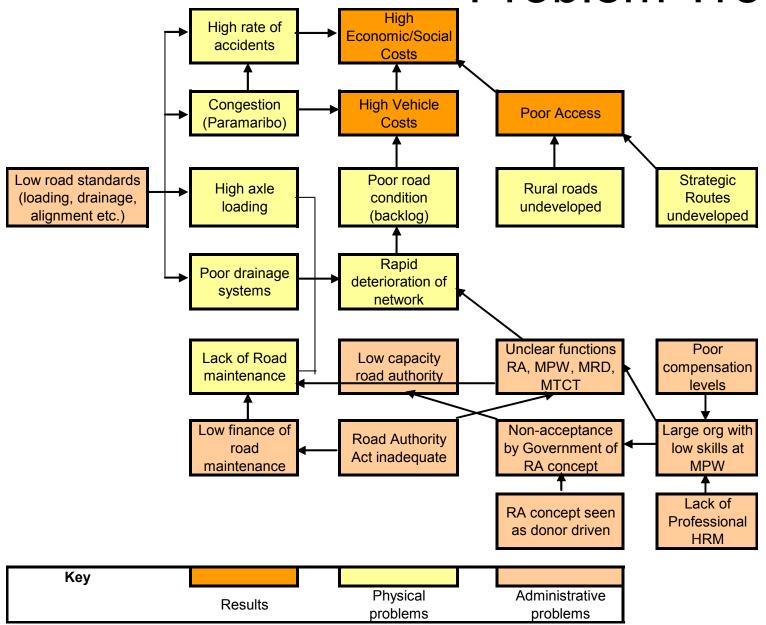

Year	0	1	2	3	4	5	6	7	8	9	10	Totals
Asset Value	312	323	334	344	353	361	368	375	380	384	387	
Maintenance backlog	63	67	72	77	83	89	96	104	112	121	131	
Maintenance requirement	9	10	10	10	11	11	11	11	11	12	12	118
Annual cost of backlog	5	5	5	6	6	7	7	8	8	9	10	76
Capital expenditure	20	20	20	21	21	21	21	21	22	22	22	231
Rehabilitation expenditure	8	8	8	8	8	8	8	9	9	9	9	93
Maintenance expenditure	2	2	2	2	2	2	2	2	2	2	2	23
VOC Benefit		(4)	(4)	(5)	(5)	(6)	(6)	(7)	(8)	(8)	(9)	(63)
Total Net Benefit		11	13	15	18	22	28	35	47	69	123	381

Strategy 2

Asset Value	312	321	331	341	352	364	376	389	403	417	432	
Maintenance backlog	63	59	55	51	46	41	37	31	26	21	15	
Maintenance requirement	9	10	10	10	11	11	11	12	12	13	13	121
Cost of backlog	5	4	4	4	3	3	3	2	2	2	1	33
Capital expenditure	10	10	10	10	10	11	11	11	11	11	11	116
Rehabilitation expenditure	12	12	12	12	12	13	13	13	13	13	13	139
Maintenance expenditure	6	6	6	6	6	6	6	6	6	7	7	69
VOC Benefit		4	4	4	4	4	4	4	5	5	5	43
Total Net Benefit		18	22	27	32	38	45	55	70	95	150	552

Case Study Countries

- Suriname
- Malawi
- Tanzania



Suriname

Basic Statistics

- GDP \$1.1b
- Population 440,000
- GDP per capita \$2,500
- 4,750km

Problem Tree

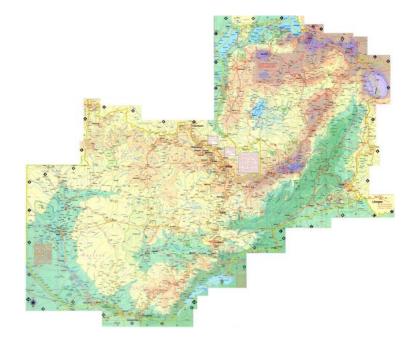
Main Problems

- Maintenance Expenditure ~15% of requirements
- Local contracting industry undeveloped
- Roads damaged by overloaded trucks, particularly loggers

Tanzania

National Development of Contracting Industry

- National Construction Council 1979
- Management Action Group set up 1994
- Tanzania Civil Engineering Contractors Association set up 1995
- Contractors Registration Board 1998
- In 1986 43 contractors and 2005 > 1,000
- Equipment available for hire from Tanroads plant pools

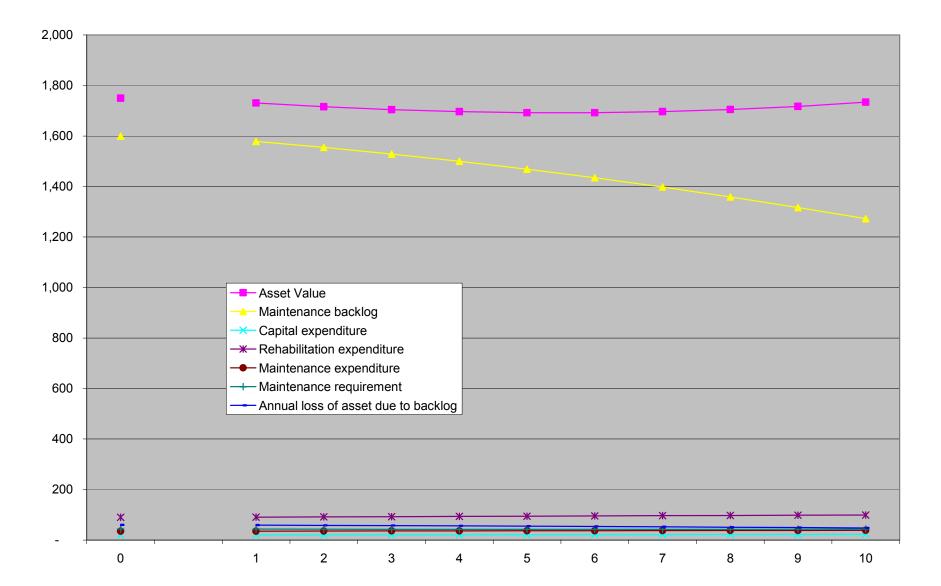


Tanzania Investment Strategies

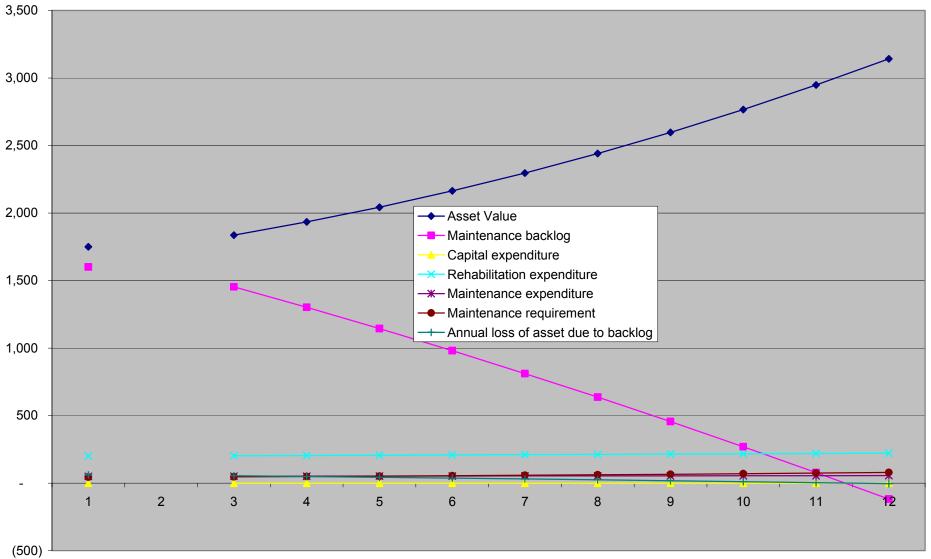
Deferred maintenance cost factor	2.0
Maintenance cost as % of asset	3.0
% annual Increase in budget	1.0

	Year 10 Projection (2015)						
(US\$m)	2005	Strategy 1	Strategy 2	Strategy 3			
Asset Value	2,600	2,660	3,047	3,435			
Maintenance backlog	1,400	1,766	908	49			
Initial Capital expenditure	130	65	-				
Initial Rehabilitation expenditure	65	130	180				
Initial Maintenance expenditure	65	65	80				

Zambia


History of Transition

- 1993 President Chiluba introduces private sector reforms in most sectors – very few contractors
- 1995 2001 greenhouse contracts in E.
 Province
- 1998 National Construction Council
- 2002 New Transport Policy & Road Act
- 2006 450 contractors
- 2006 Road Development Agency takes over national network of 67,000km


Zambia's Investment Strategies

\$millions	Year 10 Projection (2016)							
	2006	Strategy 1	Strategy 2	Strategy 3				
Asset Value	1,750	1,734	1,861	3,014				
Maintenance backlog	1,600	1,272	1,163	(9)				
Initial Capital expenditure	20	20	-					
Initial Rehabilitation expenditure		90	90	190				
Initial Maintenance expenditure		35	45	50				

Zambia Current Strategy

Zambia Strategy 2

Strategies to Develop Domestic Contractors

• Give priority to maintenance at sub national level

ng

- Package contracts attractively vertically and horizontally
- Simpler forms of contract and specifications
- The Development Team Model
- "Greenhouse contracts"
- Technical competitive tendering
- Labour or low cost equipment based

